锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

PFM的工作原理、优势及集成功率芯片中实现PFM技术-方案运用

时间:2023-08-03 07:07:00

/DC开关式电压之所以能普及,关键在于其比在宽电压输入和输出电流范围内拥有高效的调节功能。 然而在较低负载条件下,转换器 IC 自身的静态电流会成为系统损耗的主要原因时,其效率优势也就消失殆尽了。

现在,的功率元件制造商已推出一系列“双模式”开关式转换器。为提升低负载条件下的效率,这些转换器能在达到预设电流阈值时,自动从常用的脉宽调制 (PWM) 调节法切换至脉冲频率调制 (PFM) 法。

本文介绍 PFM 的工作原理并解释其优势和一些不足,然后考察一些晶片供应商如何在集成功率芯片中实现这一技术。

PWM 和 PFM

PWM 不是用来调节开关式转换器输出电压的唯一技术。 这种技术不是通过改变固定频率方波的占空比来调节电源输出,而是采用恒定占空比,然后以调制方波频率方式来实现调节。 采用恒定导通和关断时间控制方式的 DC/DC 电压转换器是 PFM 架构的典型例子。

另外一个 PFM 例子就是所谓的滞后电压转换器。这种转换器采用一种简单调节方法,使MOSFET能根据转换器检测到的输出电压变化导通和关断。 这种架构使输出电压在设定点左右往连续摆动,因此有时也称作“纹波稳压器”或“双滞环控制器”。 滞后作用用于保持预期运行,避免开关抖动。 因为滞后架构会根据电路的运行情况改变 的驱动信号,所以开关频率会改变。

PFM 架构在 DC/DC 转换方面确实拥有一定的优势,具体包括更优的低功耗转换效率、更低的总解决方案成本和简单的转换器拓扑结构,这种架构不需要控制环补偿网络,但由于一些明显的不足而不及 PWM 受欢迎。

首先是 EMI 控制。 相对于工作频率范围宽的器件,固定开关频率转换器的滤波电路更易于设计。 第二,PFM 架构容易在输出端导致更大的电压纹波,进而给被供电的敏感性硅器件造成问题。 第三,低频(或甚至频率为零)的 PFM 会增加开关转换器的瞬态响应时间,导致一些便携式应用响应缓慢,引起客户不满。

然而,将 PWM 架构的优点与单晶片“双模式”开关转换器中的 PEM 器件的优点相结合,制造商能为我们提供在整个运行范围内具有高效率的解决方案。 与 PFM 有关的 EMI 问题已大大缓解,此类干扰的根本原因是高电流和高电压条件下的快速切换,反之,在双模式芯片中,仅在低电流和低电压运行时才会变频运行。

中的能量损耗

最常见的开关设备调压技术是采用和 PWM 控制器产生方形脉冲波, 这种方波会按照通常为数百兆赫兹范围内的一组频率,对装置的内部 MOSFET(或者同步设备中的 MOSFET)进行切换操作。 (如果不考虑更严重的电磁干扰 [EMI],就允许采用体积越小的磁性元件。) 稳压器的输出电压与 PWM 波形占空比成比例关系。

锐单商城拥有海量元器件数据手册IC替代型号,打造电子元器件IC百科大全!

相关文章