锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

由粒子加速器产生的反中子形成的白洞

时间:2022-09-18 13:00:00 超高压分压显示电容器如何让电容器缓慢放电圆形旋转连接器连接器q18j4a旋转电位器r097g电容式分离器装置

由颗粒加速器产生的反中子形成的白洞
利用加速反质子与质子的碰撞,产生反中子,产生暗能量场,打开白洞。这个白洞可以在宇宙其他地方的黑洞之间形成一个虫洞,它可以通过白洞和黑洞之间的虫洞到达宇宙的另一端。白洞是由物质聚集在外缘形成的,中间物质为零,空间曲率为零。白洞具有很强的排斥力,不断向外辐射物质。黑洞是由物质聚集在一起形成的,空间曲率无限。任何靠近它的物体都会被吸引到黑洞中,黑洞也会向外辐射物质,可以根据黑洞辐射公式计算。黑洞辐射的温度公式如下:

T =
H 2πk c`
b
上式中,к约化普朗克常数是黑洞的表面张力,c是光速,k波尔兹曼常数, 上式表明黑洞向外辐射的温度,又称霍金温度公式 .
下载信息下载网站:
「割圆法」https://www.aliyundrive.com/s/Vw3w4LuWKfs
我通过百度网盘分享的文件:切割法
链接:https://pan.baidu.com/s/1ZBtrV1fRDnZLDYy2uJBf8g?pwd=685v
提取码:685v

我通过百度网盘分享的文件:切割法
链接:https://pan.baidu.com/s/1Ci-vmJNnZtr4bzNnbLjOXw?pwd=z16s
提取码:z16s

微云文件共享:反中子白洞下载地址:https://share.weiyun.com/aM1WOg40

https://115.com/s/sw6nf9j36zv?password=p545#
反中子白洞
访问码:p545

白洞有时会向内吸收温度,也可以用霍金温度公式表示。 如果你想从白洞外进入白洞,你必须克服排斥力。你可以使用电磁线圈产生的电磁力形成的引力,扭曲空间形成吸引力,进入白洞,通过白洞和黑洞之间的虫洞来到黑洞。如果你想从黑洞中逃离黑洞,你可以使用加速器产生的白洞形成排斥力,然后逃离黑洞,这样,你就可以通过虫洞从白洞到达黑洞的宇宙,同时,你想从黑洞外进入黑洞,加速器产生的白洞可以形成排斥力,然后进入黑洞,通过白洞和黑洞之间的虫洞来到白洞。如果你想从白洞中逃离白洞,你必须克服排斥力。电磁线圈产生的电磁力可以用来形成引力,扭曲空间形成吸引力,逃离白洞,从而达到从黑洞通过虫洞到达白洞宇宙的目的。通过天文观察,发现某些类星体内可能有白洞。白洞将类星体聚集在一起,形成一颗恒星。麦克斯韦方程组和引力方程式可以解决电磁力产生的引力扭曲空间,
第一部分下面介绍如何用加速器制造一个白洞,
反质子是用同步稳相加速器产生的62亿电子伏能量质子轰击铜靶产生的。反质子在塔状檀香等螺旋回旋加速器中加速到128亿电子伏能量,在塔状檀香等螺旋回旋加速器中加速到128亿电子伏能量。

如图1所示,反质子塔螺旋加速器的塔螺旋管与质子塔螺旋加速器的塔螺旋管相邻。塔螺旋加速器末端的反质子和质子相互湮灭,转化为介子,但碰撞点附近的少数反质子和质子擦拭,给质子负电荷,变成反中子。用α颗粒轰击氮气,产生质子,质子和反质子在甲苯和连甲苯溶液中相互碰撞,产生反中子。当质子与反质子碰撞时,反中子沿塔螺旋线的运动轨迹飞出。由于反中子的运动轨迹是塔形螺旋线,由于螺旋线的旋转角度非常大,由于反中子是暗物质,反中子的螺旋运动会扭曲三维空间的角度。当这种扭曲达到无限大时,三维会产生另一个维度,使三维空间变成四维空间,在三维空间中形成弯曲空间,即形成白洞,这个白洞将通过虫洞连接宇宙空间中的其他黑洞。我们将利用这个白洞中的虫洞到达宇宙的其他地方,即实现超光速旅行。

如图2所示,当上述三维空间中的三个坐标相互垂直时,它是一个内积空间。同时,当三坐标轴上的测量存在时,空间就是希尔伯特空间。A是这个三维空间的一个点,它的坐标是(x,y,z),A点到O点的距离是R,
2 2 2 2
R =x y z

假如三维空间XYZ相互夹角变成360°,那么这个三维空间就会变成一个非内积的四维空间。坐标轴J轴将再次出现。

如图4所示,当上述四维空间中的四个坐标相互垂直时,因此,它是一个内积空间,坐标轴上的测量存在时,
2 2 2 2 2
x sin θ y -2xy*cosθ x *cos θ=R
那么这个空间就是希尔伯特空间。A是这个三维空间的一个点,它的坐标是(x,y,z,j),A点到O点的距离是R,
2 2 2 2 2
R =x y z j
当反中子沿塔状螺旋轨迹高速运动时,

这将使三维空间XYZ相互夹角变成360°,那么这个三维空间就会变成一个非内积的四维空间,一个坐标轴J轴就会再次出现。同时,由于反中子是暗物质,暗物质会产生暗能量,会排斥暗能量和我们空间的正能量,降低空间曲率。

测量变化空间形成白洞,如图6所示,黑暗能量附近的空间曲率降低,当空间扭曲,空间曲率降低时,空间测量会改变,就像海上的漩涡,会使正常空间产生白洞,白洞将连接宇宙中的黑洞,通过虫洞,我们将实现超光速旅行。
科学出版社1961年出版了直线加速器的相关理论,请参考梅镇岳的《原子核物理学》
一般来说,直线加速器的加速路径是直线的,将直线加速器的加速管改为塔形螺旋管,形成上述螺旋线加速器,

如图1所示,将直线加速器的直管改装成弯曲管,漂移管也弯曲。颗粒在两个漂移管之间的间隙中加速。两个间隔的优雅管组成一组,单个漂移管组成一组,双个漂移管组成一组,加速器内部抽真空,一组振荡器正极,一组振荡器负极。在振荡器的作用下,两个相邻的漂移管产生电场力。这种电场力推动粒子在两个漂移管之间向前移动,

如图2所示,两个曲线加速器管相互连接,形成螺旋线,两个螺旋加速器,加速质子和反质子,使加速器出口的质子和反质子碰撞,产生高能反中子,同时,将两个螺旋加速器放入回旋加速器,原回旋加速器由两个金属半圆箱组成(D形盒)组成,D真空抽在盒子里,

如图3所示,两个金属半圆盒分别连接振荡器的正负极,颗粒在两个半圆金属盒之间接收振荡器产生的电场力,并加速,

如图4所示,D极性相反的磁铁安装在盒子的上下两面。在磁场的作用下,高速运动颗粒受洛伦磁力的影响,并进行圆周运动。当每次穿过两个D盒之间的间隙时,电场力加速并向前移动,这在加速器中形成了螺旋颗粒运动轨道。为了加速颗粒接近光速,必须解决振荡器频率和颗粒在轨道中运动频率的问题,在同步旋转加速器中,振荡器频率的变化是通过改变振荡器频率来实现的,但如果颗粒加速到接近光速,振荡器频率的变化要求非常小.这种微小的频率变化往往很难实现。在同步稳相加速器中,磁场强度和形状是通过改变磁铁的.或将线圈添加到磁铁中,

如图5所示,将回旋加速器的D箱加厚成圆柱形回旋加速器,然后将螺旋线加速器放入圆柱形回旋加速器中。将半圆盘D盒改为半圆柱形D盒,将两个相互缠绕的塔螺旋加速器放入D盒中。当颗粒通过两个D盒之间的间隙时,电场力加速。由于螺旋加速器的管道螺旋向下变小,当颗粒在D盒间隙加速时,电场力旋转,振荡器的电流需要改变I,使其达到聚焦离子的目的。当离子聚焦时,粒子的旋转会加强,从而更容易形成白洞。同时,需要调整振荡器电压,使旋转加速器达到相稳定和相聚焦,即离子在旋转加速器中的运动周期t需要与D盒产生的电动势V对离子产生的运动周期T`相等。也就是说,D箱的电势对离子产生圆周运动的周期和粒子的运动周期产生共振。只有形成共振,才能聚焦粒子的电势相位。这些反中子沿塔螺旋心路径旋转高速运动,扭曲空间角度。xyz三个坐标轴的夹角从90度变为360度°,时,三维空间就会变成四维空间,在这个四维空间中,反质子使空间曲率减低,就会形成白洞,空间曲率降低后,就像海面上形成漩涡一样,就会产生白洞,白洞中的虫洞将连接宇宙中的另一个黑洞,通过白洞中的虫洞将达到超光速运动的目的。同时,上述切割法可以解决白洞打开的空间体积。根据上述切圆法公式,
∞ ∞ ∞
∑η=∑πkf(tgθ/y)/2√2=∑πkf[tg(π/ny)]/2√2
n=1 n=1 n=1
上式称为函数y=f(x)测量参数的变化程度。一个函数的变化程度可以用上面的公式计算。 函数f(x)所以,

∑πkf[tg(π/ny)]/2√2
n=1
可用于表示白洞入口的大小,加速器需要聚焦粒子,使白洞形成的面积更大。

聚焦粒子的方法
以下内容见科学出版社1958年出版的《原子能翻译丛基本粒子加速器》、《用横断镜系统聚焦直线加速器中粒子束的理论》、苏联、沙尔沙诺夫(A.A.Шаршанов)着,1956年5月,斯捷班诺夫在全苏高能粒子物理会议上(к.н.сгепанков)沙尔沙诺夫(A.A…Шаршанов)报告的一部分。

                              3   2                  3   2                                       mv   r   α           mv   r   α          2     2               x   0         2        y   0       2 

I = I I = [ ] [ ]
2 1 1 1 1 1
eT( ) eT( )
ω ω ω ω
1 2 1 2

上述电流添加到回旋加速器的振荡电势上I 聚焦粒子的目的可以实现。
2

将上述电流添加到直线加速器的振荡电势上I 聚焦粒子的目的可以实现。
2
上式中,m表示电子质,e表示电子伏, r表示x=0时电子运动截面的半径,
v 表示电子在x轴上运动的速率,v 表示电子在x轴上运动的速率,
x y
上式中,const代表任意常数,ω表示电子运动的角速度,α表示电子的振幅,
根据割圆法,得
3 5 7
∞ ∞ π π π
f`(w)=∑η=∑f(tgθ/y)(π- + + )
n=1 n=1 24 1920 80640

                            3       5         7   
       ∞                 π      π        π    
      =∑f(tg(π/ny))(π-       +       +          )
       n=1               24     1920     80640         


3 5 7
∞ π π π
I =∑f(tg(π/nI ))(π- + + )
3 n=1 2 24 1920 80640
给回旋加速器的振荡电势上面加上上面的电流I 就可以达到聚焦粒子的目的。
3

给直线加速器的振荡电势上面加上上面的电流I 就可以达到聚焦粒子的目的。
3

直线加速器介绍

如图1所示,加速器中间是一系列金属圆管,称为漂移管,漂移管的长度逐渐增长,排列成单数,或双数的漂移管连接在一起,最后形成两组,单数的漂移管用导线连接在一起,形成一组,双数的漂移管用导线连接在一起,形成一组,两组导线接在振荡器的正负极,振荡器上面接上周期振荡的高频信号,加速器里面的粒子只在两个漂移管中间的区域受到电场力的作用而加速前进,粒子在第一个间隙中获得的能量增加是eZV,eZV代表兆电子伏,要使粒子在其他间隙获得相同的能量增加,漂移管的长度不同,电压也不同。所以就需要调节间隙的长度,使粒子在每个间隙获得的能量一样大,也可以调节振荡器的输出电压,使粒子在每个间隙获得的能量一样大,

这个确定管长的电势值V 在正常情况下和振荡器的电压幅值V很接近,
0
不过稍微小一些, 实际上,粒子穿过间隙需要一定时间,而振荡器所供应的电势是在变动着的, 所以加速不是在一个确定的电势值上, 而是在一定范围内的电势值上进行。

如上图2所示,漂移管连在一起,它们通过放电球接入振荡器电路,正当电源通过电容和电感产生振荡信号,两个放电球接入振荡信号两端,它们中间产生放电高压。漂移管间隙电压分别为V ,V ,V ,粒子运动的周期分别是t ,t ,t ,
1 2 3 1 2 3

它们在t ,t ,t 之前是快速上升,它们在t ,t ,t 之后是缓慢上升,
1 2 3 1 2 3

L 是第n个振荡管的有效长度,振荡管是中心有圆孔的金属圆片,
n
加速粒子穿过每个管的时间t必须等于振荡器周期的一般,即
L λ
n
t= = (24.1)
v 2c
n

上式中,v 是粒子通过第n个管的速度,λ是振荡器输出的波长,c代表光速,
n
经过n个间隙的加速后粒子的能量是,

                           2       
                     m   c            
                        0                     
   T   +neZV   =                               (24.2)   
                         2   
                     1-β       

上式中,T 是粒子入射时的能量,从(24.1)我们知道,eZV代表兆电子伏,n代表常数n
0

m 代表质量,c代表光速,
0

          L   =β   λ/2                 (24.3)
            n    n

上式中,β =v /c
n n
根据(24.2),第n个管的有效长度是
2 -2 1/2
L =(λ/2)[1-(nZα+T /m c ) ] (24.4)
n 0 0
上式中,
2
α=eV /m c
0 0
如果加速的是重粒子,则最后总共增加的能量和静止质量比较不大,粒子的射入能量也很小,
2
nZα<<1, Z代表单位兆,T /m c ~1
0 0
(24.4)可化简为
1/2
L =(λ/2)(2nZα)
n
如果加速的是电子,最后总共增加的能量可能比它的静止质量相关的能量大很多,nα>>1,
从(24.4)可以看出,L 接近常数λ/2,这是因为粒子这时的速度已接近于常数(光速c),
n
从(24.5)可以看出,要使加速管总长度减小, 振荡器的频率愈高愈好,要增加粒子的质量, 可以采取增加振荡器的频率和电压以及加速管的节数或加速管的总长度的办法。
关于振荡器的详细内容,可参见《研究辐射的电子学方法》,苏联A.A.萨宁著,科学出版社1958年出版

聚焦问题
直线加速器的相关理论,可参见梅镇岳著《原子核物理学》,科学出版社1961年出版
同时,螺旋加速器中的质子或反质子需要聚焦。经过聚焦的质子或反质子,碰撞后产生的反中子,能量会更高,这样才会产生白洞。所有加速器都有聚焦问题,直线加速器也不能例外, 加速后离子流的大小与离子在加速器中聚焦的情况很有关系,要从直线加速器得到合用的离子束,必须同时有径向聚焦和相聚焦。现在参考图3.9,先来考虑没有到达相对论性速度的离子的径向聚焦,

图3.9表示振荡器输出电压在加速半周时两个漂移管间隙中的电力线, 事实上,电

场形成一个静电镜头, 假设加速电势接近最高的正值V,
这时离子穿过间隙的左方,和管轴成一小角度,同时,假设离子进入间隙时并不处在管轴上,离子受到两方面的加速:受到电场轴向部分的作用沿轴向加速和受到电场径向部分的作用向轴作径向加速, 离子穿过间隙右方时,继续受到轴向加速,可是它同时受到立轴的加速,这两部分径向位移并不互相对消, 因为粒子在左方时花的时间比在右方时多,因而有一个总的向轴的位移,这就是径向聚焦,如果离子通过间隙时,

加速电势正从 V 减小到零, 那时向轴和离轴的径向位移差别加大,

径向聚焦加强,如果离子在加速电势从零增加到 V 时通过,径向聚焦减弱,或甚至完全消失。 注:径向聚焦就是两个漂移管间隙中椭圆形电场线造成的,调节这个椭圆形电场线,使椭圆电场线的弧度变大,就会使径向聚焦加强。这个椭圆形电场线使粒子汇聚到一起,达到聚焦离子的目的。径向聚焦是由于离子在间隙两半的速度差而产生的效应,当离子速度加大而接近于光速时,这种差别减少,因此径向聚焦效应也减弱,只有离子在加速电势从 V 减小到零时,通过间隙才会得到有效的径向聚焦。可惜这和相聚焦的条件相矛盾。加速器设计的电势值V 和振荡器最高电势值~V的关系可用图3.10来表示,
0

在每一个加速半周中,每一个间隙中的电势两次经过设计数值,即相当于图a和a所表示的相位。现在来考虑离子通过间隙时正当加速电势上升的情况,如果粒子到达间隙时的能量比共振能量V 小,它便会迟到,有一个相当于图中c的相位, 0 此时,它会得到比正常情形更多的加速,因而就会逐渐把相位移到V , 0 如果它到达间隙时的能量比共振能量V 大, 0 它便会有一个比V 早的相位b,这时它就得到比正常情形小的加速, 0 因而也会逐渐把相位移到V ,所以,在这种情形下, 0 原来相位接近于V 的离子在通过间隙是趋向于接近V 而集中, 0 0 很明显,离子通过间隙时正当加速电势下降, 相位接近于V 的离子有相位散焦的现象,最后这些粒子就会损失掉。
0
由于相聚焦的关系,可以允许漂移管的长度或加速器其他机械或电磁特性参数有小的误差。离子能自动调整,使它们能从电场获得正好需要的能量值,保持一直和振荡器共振。
注:要实现相聚焦,就需要不断调节振荡器在两个漂移管之间产生的电势场的频率,这个电势场的周期和粒子在加速器里面运动的周期形成整数倍,即形成共振。

质子直线加速器
目前在直线加速器的设计中都用加速器的真空室作为谐振腔,它的振荡方式特性是在轴上所有各点都有轴向振荡电场,现在用一个具体的质子直线加速器作为例子来说明,这个加速器的谐振腔(或真空室)长12米,直径1.2米,振荡功率用28个202.5兆周/秒(λ=1.5米)的振荡器经过腔壁上的28个耦合点接入,这些振荡器由一个主控线路加以同步,振荡器输入功率一般都采用脉冲式,在这个具体例子中,脉冲宽600微秒,每秒重复30次,47个漂移管都安装在谐振腔的轴线上,管间空隙等于管长的三分之一,为了消除离子速度接近光速时径向聚焦和相聚焦间的矛盾,这个加速器漂移管的入口端蒙上金属细网,使管间空隙中的电力线如图3.11所示,

在这种情况下,离子在加速半周的任何时刻通过间隙都会有径向聚焦,而相聚焦的条件不变, 入射的质子先经过静电加速器加速到4兆电子伏,离子的最后能量达到31.8±0.1兆电子伏,在出口处离子束直径大约是3毫米,离子流强度的最大值为16微安,平均为0.25微安,应该注意到,在这种加速器中,全部漂移管间隙中的高频加速电场的方向在任何时间都是一样的,公式(24.1)现在应该改正为:
t=λ/c (24.6)

电子直线加速器
目前广泛的采用直线加速器来加速电子,因为当能量为1兆电子伏时,电子的速率已经是0.94c,即0.94倍光速,所以我们可以把漂移管长度设计成全部相等,它的数值就是(24.6)中的波长λ,注:这个波长等于光速乘以离子在加速器里面运动的周期。入射电子的速度应当最大,一般能量都在几百千电子伏的数量级,电子直线加速器用有圆孔的金属圆片代替漂移管安装在加速管内,这也可以看作是许多谐振腔由圆孔耦合起来,或看作是载有金属环片的圆截面波导,可以设计的使电磁波在其中沿着轴向传布,波的速率从电子的初速增加到光速,电子可以被这个波的电场加速,并随波前进,波导中还可能有其他电磁波,由于它们的速率各不相同,它们对于电子运动的作用的平均值是零,在电子直线加速器的情形中,当电子接近光速时,应当考虑谐振腔内磁场部分的作用,它会抵消电场的聚焦作用,所以,结果是既不聚焦,又不散焦。在加速初期可以另加装置使电子聚焦,有时入射电子的能量相当高,而且已经准直的很好,使可以不用再加径向聚焦的措施,在电子速度很接近光速时,没有相聚焦的作用,在加速初期聚焦的电子受到干扰后,就不会有恢复应有相位的趋向,所以加速器高能部分的机电结构必须十分精确严密,才能使电子有效的加速,电子直线加速器可以设计成能量不很高,但束流很强,可以利用它来产生快速中子,或用来产生强度很大的γ射线作为辐射源,现在已有设计加速到1千兆电子伏的电子直线加速器,它的总长度是67米左右,用21个功率各为20兆瓦左右的2856兆周的振荡器输入功率,目前以实际加速电子到600兆电子伏,除利用它所产生的高能γ射线进行原子核反应的研究外,高能电子可以直接用来研究质子的结构或其他原子核的结构。
直线加速器的优点
聚焦直线加速器中的例子的理论,可参见科学出版社1958年出版,《原子能译丛基本粒子加速器》,
直线加速器的优点是(1)加速粒子可以很容易的从加速器导出,不再受到加速器电磁场的影响,这在装备有磁铁的加速器(如回旋加速器、电子感应加速器等)中是很费力的一件事,而且在导出以后粒子束流量会大大减弱,(2)加速器建成后还可以用增多加速管节数的办法来增大粒子能量,用圆周形加速轨道的加速器就不能这样办,(3)加速器的建造费用加速粒子能量的1次方成比例,而装备有大磁铁的加速器的建造费用则与加速粒子能量的高次方成比例,(4)在加速粒子速度很大时,辐射损耗比圆周形轨道的加速器要小得多,但是用来加速重粒子到高能量的直线加速器将是一个庞然大物,即使不考虑建造经费,维持高真空和聚焦加速粒子也都是很困难的问题。
25.回旋加速器
基本原理
回旋加速器是在原子核物理学研究中广泛应用的一种加速器,它也是很久以来就为大家所熟悉的,与直线加速器的原理相类似, 它利用同一电源把粒子多次重复加速,如图3.12所示:

回旋加速器的高频交流电压加在装置于一个大磁铁的磁极面间的两个金属半圆盒(D形盒)上。我们知道,在均匀磁场中带电粒子的运动轨道是圆形的, 曲率半径ρ可用下面的公式决定:
m vγ
p 0
ρ= = (25.1)
HZe HZe
上式中,m 是粒子质量,V是粒子运动速率,γ是常数,
0
p是粒子的动量,γ是粒子接近光速运动时由于相对论相应增加的质量参数. H代表磁场强度,Ze代表电子伏能量,粒子进入一个D形盒到离开它之间所花的时间
πm γ
πρ 0
t= = (25.2)
v HZe
当粒子的速度不大时,γ≈1,t是一个常数,我们可调整磁场强度或电源频率(f),使振荡器的半周期(1/2f)和加速器的半周期(t)之间存在共振吗,即

          HZe            
    t=                              (25.3)
       2πm   γ               
            0     

这样每当粒子出现在D形盒的间隙中时,电场强度正好使它加速,每次穿过间隙后,粒子就移向相当于它能量增加后的加大轨道,直到最后粒子运动轨道到达磁极面的边缘, 那里有一个静电电势的偏转板可以控制粒子的运动,使粒子打在内靶或外靶上,粒子最后的动能是:
2 2 2 2 2
p ρ H Z e 2 2 2 2
T= = =2π f ρ m (25.4)
2m 2m 0
0 0
对于一定的加速粒子,最后达到的能量与回旋加速器磁铁的半径和磁场强度或振荡器的频率有关,对于一定的磁铁,可用调频的方式来达到共振,
2
粒子最后的动能与Z /m 成正比例。
0
对于质子和α粒子,这个比的数值近似一致,所以它们可以获得同样的能量,通常采用一个较为方便的办法,即把振荡器的频率固定,而调整磁场强度来达到共振,这时粒子最后的动能和m 成比例。
0
当加速粒子的速度增加到一定程度以后,我们就不能把γ当做常数,如果振荡器的频率一定,则离子向外圈运动时,它便逐渐不能及时到达D形盒的间隙,最后终于失去和振荡器的同步关系,在直线加速器中,同步并不成为问题,因为每个漂移管的有效长度都可以调整得能适合相对论方程(25.3),但在目前回旋加速器的情形中,就必须改正磁极面,使得H/γ至少近似的是一个常数,这就要求磁极面靠近边缘的部分磁场强度加强,可是这种磁场强度分布会使粒子束对D形盒中间平面散焦,使粒子流强度大大减弱,事实上,为了使粒子束聚焦,回旋加速器所用的磁场随着磁极面半径的加大而减弱,这样的一个安排和相对论性效应相反的要求限制了普通回旋加速器中加速粒子所能达到的能量,
2
如果被加速的是氘核(H ),最大能量可以达25兆电子伏左右,很明显,用普通回旋加速器来加速电子不是最合适的,因为电子在较低能量就以达到相对性速度。

聚焦
对于回旋加速器,也需要考虑粒子束的聚焦问题,必须有一定的机制使粒子趋向于在D形盒的中间平面运动,才能获得聚焦的粒子束,首先是电场的聚焦,这和直线加速器的径向聚焦情况类似,不过目前的情况不是向轴,而是向平面聚焦,在D形盒间隙中的高频电场形成一个静电镜头, 在粒子的速率加大或它的运动轨道半径加大,这种聚焦的效应减弱,实际上,在运动轨道半径等于最大值的1/3到1/2时便已经失效,根据计算,在回旋加速器的情形中,由于粒子穿过D形盒间隙时正当加速电势减低那种情况所产生的电场聚焦,比由于粒子在D形盒间隙进口端和出口端速率的差别所形成的聚焦更为重要,另一种对中间平面的聚焦作用来自磁场的边缘效应,这在粒子运动轨道半径加大时有效,从图3.13可以看到,

在磁场边缘附近有一个把粒子推向中间平面的分力,可以故意把边缘附近的磁场减弱,加深磁力线的弯曲度,以增强这个效应,这样,磁场强度便不再是常数,在接近磁场边缘的地方不能满足共振条件,加速后粒子的能量要小于方程(25.4)所要求的,而且,粒子的相对论性效应的质量增加也有和加深磁场边缘效应相同的破坏共振条件的倾向,使情况更差一些,不过由于它能增强粒子流,实践上,还是采用减弱边缘磁场的办法,一般把磁极面中央的磁场选得比共振磁场强一些,边缘磁场比共振磁场弱一些,事实上由于电场和磁场的聚焦作用,加速粒子在回旋加速器中旋转向外运动的同时,有一个铅直的上下振动,电场作用的振动幅度随粒子运动轨道半径而增大,好在经过短时间的加速后,聚焦就以磁场作用为主,那时振动幅度也就随着粒子接近磁场边缘而减小。

相稳定
我们可以来看一下回旋加速器中粒子运动轨道的相稳定问题,由于磁场强度在接近磁极面边缘时自内向外逐渐减弱,再加上粒子质量相对论性增大的影响,粒子向外旋转式便逐渐不能满足共振条件,假设磁场是圆周对称的,对于一定的粒子运动轨道半径,磁场强度有一固定值,在这一轨道上运动的粒子有一定能量和相对论性质量,因而根据(25.2),也就有一定的半周期t, 只有在一个合适的半径上,t值才会和振荡器的周期t 相等,
0
如果有一个在这个半径值上运动的粒子恰巧在间隙中电势等于零时通过D形盒间隙,因为处于共振中,他将继续不断的在这个半径值上运动,这是一个相稳定的轨道。现在参照图3.14所示的D形盒间隙中的电势变化,假设粒子到达间隙时间稍早,并且是在a附近,而不是在c附近,此时它将受到加速,加速后它的质量会发生相对论性增大,同时他将进入一个半径较大的运动轨道(哪里H值减小),这两种效应都使离子的半周期增大,因此,它到达下一个间隙的时间就要延迟,由于类似的原因,迟到的粒子的半周期会减小,因而它到达下一个间隙的时间会提早,这样,粒子就能逐渐准时的到达间隙,这就是粒子运动轨道的相稳定,也就是相聚焦,应该注意到,在回旋加速器的情形中,相聚焦要求离子经过间隙时正当加速电势下降,这恰好与直线加速器要求相反,如果粒子经过间隙时正当加速电势上升,也就是图3.14的c附近,则会发生相聚焦,相稳定的轨道倾向于把相位和轨道半径略有差别的粒子聚集在一起运动,实际上,粒子将在相位上,垂直方向上和径向上围绕着稳定轨道振动。

回旋加速器的特点
回旋加速器可以产生很强的加速粒子流,在加速器内部可以得到1毫安的粒子流,导出的粒子流也能达到50毫安左右,它对于研究核反应、产生中子和制备放射性同位素都很有用,表3.1列举一个大型回旋加速器的一些特性。
表3.1一个大型回旋加速器的特性
磁铁重 400吨
铜线重 27吨
磁极面直径 225厘米
加速氘核到25兆电子伏的功率 60千瓦
最大功率 240千瓦
最大轨道半径 90厘米
加速氘核到25兆电子伏的磁场 11500高斯
最大磁场 18000高斯
振荡器频率 8.7兆周/秒
振荡器功率 230千瓦
D形盒间隙电压 200千伏
能量 25兆电子伏(氘核)
粒子流(内部) 300毫安

第二部分加速器原理
下面内容,可参见梅镇岳著《原子核物理学》,科学出版社1961年出版
26.同步回旋加速器
上面已经谈到过,由于粒子聚焦的要求,回旋加速器磁极面边缘磁场要特别的削弱,再加上被加速粒子的质量的相对论性增加,粒子再加速到一定程度以后就不能满足共振条件,回旋加速器所能加速的能量因此受到限制,我们可以利用粒子运动轨道的相稳定来解除这个限制,这就是使稳定轨道的半径周期地从内向外增大,在同步回旋加速器(或称调频回旋加速器)的情形中,这种稳定轨道的周期性膨胀是依靠振荡器频率的周期性改变来产生的,在同步稳相加速器的情形中,则依靠磁场的周期性改变来产生。在回旋加速器中稳定轨道上运动的粒子的半周期与振荡器的半周期相等,如果把后者适当减小或把把它的频率充分加大,稳定轨道的半径便可以尽量缩小,根据(25.3),频率的最大值f 应该是
0

              H   Ze     
                 0               
      f    =                       (26.1)
        0       2πm
                     0     

其中H 是离子源所在地方的磁场, 使振荡器频率逐渐从f 减低到f -△f,
0 0
这时稳定轨道半径必须相应地增加,由于相稳定作用,粒子回旋向外运动时依旧保持聚集在一起的情况。如果频率是很慢的减小的,聚集在一起的粒子经过间隙的时间只比相稳定情况所要求的(见图3.14)在相位上稍微早一些,它才能得到必要的加速,如果振荡器频率改变的比较快,相稳定b点会接近加速电势的最大值,b点对于交叉点a的相对位置可用相位角φ来描述,振荡器频率减弱的速率越快,同步相位角φ的值愈大,每周粒子能量的增加便越大,粒子到达一定半径的运动轨道所需要回转的圈数也就愈少,同步相位角的数值应该使粒子每周能获得足够的能量,使它的频率能与振荡器的相配合。因为在同步回旋加速器的情形中,不存在本节开始时所谈到的限制,所以,用不十分高的电势加在D形盒间隙,便可以得到高能加速粒子,但是粒子在同步回旋加速器中旋转的次数要比在同样的回旋加速器中增多,同步回旋加速器对于D形盒中间平面聚焦的要求可以放松一些,因为它主要依靠运动轨道的相稳定来获得聚焦的粒子束,和低能直线加速器的情形一样,对于一些设计参数的要求在一定程度上可以放宽一些,例如振荡器频率改变的速率或改变的限制都并不需要严格的加以控制。实际上振荡器的调频可以用一个转动的可变电容器连在振荡器的储能线路上来进行,当振荡器的振荡波长和D形盒大小同一个数量级时,为了使得沿半径各点的加速电压均匀,同步回旋加速器采用单个D形盒,加速电压加在这个D形盒和接地外壳之间,如图3.15所示。

同步回旋加速器输出的粒子束形成脉冲,振荡器没扫频一次,就有一个脉冲输出,要得到比最高能量低的加速粒子,可以调节安装在D形盒对面的内靶位置,由于粒子流具有脉冲形式,平均粒子流强度是弱的,平均内部粒子流为毫安的数量级,粒子流的导出比回旋加速器要费事的多,流量很小,目前世界上最大的这种类型的加速器是莫斯科近郊联合原子核研究所的680兆电子伏质子同步回旋加速器,现在把它的主要性能列于表3.2
表3.2杜布纳联合原子核研究所680兆电子伏质子同步回旋加速器性能
加速器总质量 7000吨
磁极面直径 6米
磁极间隙 60厘米
中心磁场强度 16600高斯
D形盒电压 15千伏
每秒脉冲数 ~100
振荡器频率 26.5-13.6兆周/秒
加速质子能量 680兆电子伏
平均粒子流 0.2-0.3毫安
注:同步回旋加速器和直线加速器聚焦电子的方式相同,它们都是通过改变振荡器的频率来改变粒子在加速器中运动的周期, 来使粒子和振荡器达到共振,进而达到相聚焦的目的。
27.电子感应加速器
基本原理
电子感应加速器是用来加速电子的,它利用电磁铁中磁通量的改变来加速电子,同时把电子的运动固定在一定的轨道上,电子沿着轨道转动时受到的平均力等于电磁场所做的功除以经过的距离2πρ,从另一方面说,这也就是动量的变化率:
e(△φ/△t) △p △(Beρ)
= = (27.1)
2πρ △t △t
这里△φ/△t等于感应电压,ρ是电子运动轨道的半径,p是它的动量,假设ρ是常数, 把有限的增加作为微分看待, 那么,在两个时间t 和t 之间取积分,我们就可以得到,
1 2
2
φ(t )-φ(t )=2πρ [B(t )-B(t )] (27.2)
2 1 2 1
如果在所有时间内通过电子运动轨道的磁通量和在轨道上的磁感之间有下面关系:
2
B(t)=φ(t)/2πρ (27.3)
条件27.2可以自动满足,把电磁铁的磁极面加以修正,使接近边缘部分的磁感很快减弱,在这样的磁极间隙中可以找到一个符合(27.3)的要求的运动轨道。实际上,电子感应加速器所采用的电磁铁的截面大致如图3.16所示,从27.3可以看到,电子运动轨道内的平均磁感等于轨道上磁感的两倍,中间部分密集磁通的形成依靠磁极面的修正和放在中间的磁导很大的材料做成的圆块,电子运动轨道的位置处在磁极间隙中的环状真空室内, 磁铁由硅钢片构成,每秒激磁几百次, 激磁电流在一定方向从零增加到最大值时,电子受到加速。

电子束的入射和导出
对于电子加速器而言, 如何使低能量电子入射到运动轨道中去和把加速后的电子从轨道中导出是一个很关键的问题, 电子的入射问题可以利用加速器中电子运动轨道的径向稳定性来解决,一个靠近平衡轨道入射的电子,经过感应磁场的加速后,会逐渐趋向这个轨道,它会在轨道所在的平面振荡,但是在加速的过程中振幅愈来愈小,要解决电子从运动轨道导出的问题,可以在一个合适的时间破坏(27.3)所示的条件,这时电子就被迫移到别的轨道上运动,可以突然在绕在磁铁中心部分的扩大电子运动轨道的线圈中通一大电流,这会使φ突然增加,根据(27.3),稳定轨道的半径也应该同时增大,要留意到, (27.3)中
2
的B以比1/ρ小的变化率随着ρ的增大而减小,所以因子ρ 起着决定性作用,轨道半径能随着磁通量而增加,可以使在扩大的轨道上运动的电子打在靶上而产生高能X射线,从靶子射出的X射线形成一个几度宽的向前锥体,能量愈大,射线愈集中,电子运动轨道的扩大可以在加速周期中的任何时刻进行,所以,电子感应加速器可以作为能量可连续改变到一定最大值的X射线源,直接把电子从加速器导出较为困难。
电子的能量
我们可以来估计一下电子可能从加速器获得的能量,一般在磁场开始增强时,从电子枪向希望到达的轨道射入60千电子伏左右的电子,当磁场增强时,电子获得的动能是
△φ e△φ
△T=e = (27.4)
△t 2πρ/v
因为电子在加速器中的运动速率接近光速c, 所以在(27.4)中可以用c来代替v, e代表电子伏,即一个电子(所带电量为1.6*10-19C的负电荷)经过1伏特的电位差加速后所获得的动能。 在激励电流上升的四分之一周中,磁通量是从φ 增加到φ ,
1 2
电子所得到的能量是:
ec
T= (φ -φ )=(B –B )ρce (27.5)
2πρ 2 1 2 1
所以,电子所能得到的能量受到运动轨道的半径和轨道上的磁感的最高值的限制。

轨道稳定问题
在电子感应加速器中, 电子运动轨道的稳定问题和加速粒子做圆周运动的其它加速器(例如回旋加速器或同步回旋加速器等)中的稳定问题一样,对于运动轨道的径向稳定问题也是采用随着半径的增加而减弱的磁场来解决的。事实上,运动轨道的径向和轴向稳定的问题,可以很明确的加以分析,在平衡的轨道上运动的电子的离心力应与磁场的向心力相等。
pv
-evB =0
ρ z
0
这里ρ 是平衡轨道半径,B 是磁场强度的z分量,假设电子在中间平面内有径
0 z

向位移,它的瞬时径向位置成为ρ +x, 且x小于ρ 很多(见图3.17),这时电子所受
0 0
到的力是:
Ә B ӘB B
pv z z z
f = -ev(B + x)≈-ev( + )x (27.7)
x ρ +x z Әρ Әρ ρ
0 0
在(27.7)中已用方程(27.6)来消去pv, 事实上(27.7)可以改写成
evB
z
f =- (1-n)x (27.8)
x ρ
0
这里
Ә B / ðρ
z
n=- (27.9) Ә表示偏微分符号
x B /ρ
z 0
是一个磁场强度的参数,它代表在运动轨道上磁场强度的变化,如果n<1,f 的值是负的,
x
这表示作用力和位移x方向相反,电子的径向运动方程可以写成
2
d x evB
z
m γ + (1-n)x=0 (27.10)
0 2
dt ρ
0

这里
1
γ=
2
1-β
中考虑了电子沿着轨道运动的速度,但是略去了它的径向运动速度,如果我们用

             v
   ω    =                                               
          0      ρ         
                  0    

代替evB /p, (27.10)又可以改写成
z
2
d x 2
+ω (1-n)x=0 (27.11)
2 0
dt
事实上,这是一个简谐运动的微分方程,x的简谐变化有一个角速度ω
ρ
1/2
ω =ω (1-n) (27.12)
ρ 0
对于垂直方向或轴向的运动,我们可以进行类似的分析,在中间平面磁场只有垂直分量,所以它在垂直方向不起作用,但是由于磁场不均匀,有一个小的径向磁场在中间平面的上下,径向磁场的近似公式是
Ә B Ә B
ρ z
B = + z (27.13)
ρ Ә z Әρ
这里最后的形式根据
Ә B Ә B
z ρ
=
Әρ Ә z

可以从麦克斯韦方程
×B=0
推导出来(在电子运动一周的过程中磁场可以看作是静止的),垂直方向作用于电子的力的形式是
Ә B nevB
z z
f =evB =ev z=- z (27.14)
z ρ Әρ ρ
0
当n>0时,作用力和位移反向,由于与讨论径向运动时相同的理由,我们知道,z方向的简谐运动角速度是,
1/2
ω =n ω (27.15)
z 0
因此,要达到运动轨道的径向的和轴向的稳定,参数n必须满足条件
1>n>0 (27.16)
n值大于零愈多,轴向聚焦力愈强,n值小于零愈多,径向聚焦力愈强,上面的分析显然可以应用在其他装备有磁场的、加速粒子作圆周运动的加速器上,因为在电子感应加速器中加速是连续的,相聚焦的问题可以不用考虑。注:上面的分析也适用于回旋加速器加速质子或反质子,它们的轨道稳定也可以用上面的方法计算。因为, 垂直方向作用于电子的力的形式是
Ә B nevB
z z
f =evB =ev z=- z (27.14)
z ρ Әћρ ρ
0
因为, 推导过程可参见苏联福瑞德里许.洪德著,王福山译,科学出版社1958年出版,《原子与量子理论》

   -mp   t                   -mp   t         
      n                          n+1      
     ћ            x           ћ          x   

B=c e sinπn +c e sinπ(n+1)
n a n+1 a
上式中, B 表示垂直方向上的磁场, c 表示n位置的粒子位置的概率,c 表示n+1
z n n+1

位置的粒子位置的概率, m代表电子质量,p 代表电子在n位置时的动量,p 代表
n n+1
电子在n+1位置时的动量,a代表粒子不受力作用的x轴坐标,x代表粒子的x轴坐标,c 表示n+1位置的粒子位置,p 代表n+1位置的动量,
n+1 n+1

               2   2                  
            ћ   π     2
    E    =          n                                  
      n         2  
            2ma 

               2   2                  
            ћ   π       2
    E    =          (n+1)                                  
      n+1         2  
             2ma 

m为电子质量,a为电子运动时的加速度,n为电子数量,给回旋加速器外加磁场B 可
z
以达到聚焦粒子的目的,
电子感应加速器的用途
利用电子感应加速器进行原子核物理研究时,多半采用使加速电子撞击内靶产生X射线的办法,高能X射线对于研究光致核反应和制备必须由光致核反应产生的放射性同位素特别有用,显然,高能X射线在辐射治疗和其它辐射应用上也是非常有用的。

28.同步稳相加速器
要用回旋加速器的原理把粒子加速到相对论性速度,首先必须解决振荡器的频率和粒子在轨道中运动的频率相配合的问题,在同步回旋加速器的情形中,这是依靠变更振荡器频率的办法来解决的,但是,如果要把粒子加速到接近于光速,振荡器频率所需要改变的百分比会超出实践的可能,在这种情形下,我们可以保持振荡器频率不变,而改变磁场强度,这种改变可能是永久地修改磁极面的形状和装备补偿线圈,使它能同时维持共振条件和聚焦条件,这对于磁极面的机械加工提出了很特殊的要求,并且,有时还必须加补偿线圈,所谓三叶草磁极而回旋加速器就属于这种类型,它的优点是振荡器和激磁电源都不复杂,而离子流强大,其缺点除磁极面加工困难外,还有所需的磁铁重量很大的问题,这种加速器目前正在试制阶段。另一种改变磁场强度的办法是时间上的改变,这就是同步稳相加速器所采用的办法. 当粒子质量增加时,它的角速度或频率降低,但如果能同时使磁场强度适当地增大,它便能维持粒子的角速度不变,
ω=c/ρ (28.1)
且几乎不变,(28.1)说明,粒子的运动轨道近乎不变,粒子可以用相当快的速度入射到轨道中去,这样轨道半径虽然不是常数,但变动也会很多,需要磁场作用的地方只是一个环状而不是一个圆面积的区域,因此可以节省很多磁铁。加速电子用的同步稳相加速器一般装有瓷的环状真空室,真空室的内、外都镀银,它用作加高频电压的谐振腔,加在银镀面间隙间的电压使经过间隙的电子加速,通常在加速电子的开始阶段,利用电子感应加速器把电子先加速到接近光速(1到2兆电子伏),所以,还需要一些导磁铁块连在环状磁铁内部,以满足电子感应加速的要求,但是,即使这样,比起一个同样能量的电子感应加速器来,也还是可以节省很多磁铁,目前已建成的加速电子到几百兆电子伏的同步稳相加速器已经相当多,也已建成加速电子到1千兆电子伏以上的同步稳相加速器。用同步稳相加速器可以把质子加速到千兆电子伏的数量级以上,杜布纳联合原子核研究所内装备有加速质子到10千兆电子伏的同步稳相加速器,质子先在静电加速器内加速,然后射入直线加速器,在直线加速器内加速到8.5-9兆电子伏以后,质子就入射到同步稳相加速内去加速,因为这时质子的速度还和光速相差很多,经过一个固定轨道所需要的时间还是会改变的,所以在同步稳相加速器中,不仅需要随时间而增大磁场,而且还需要在大范围中调频来保持粒子运动轨道半径接近于常数,这个加速器的环状磁铁的直径达到72米,总重达36000吨,无论从大小、重量和加速质子的能量来看,都应该把它看作一个宏伟的工程成果。近年来还有利用强聚焦原理设计同步稳相加速器来把粒子加速到更大能量的,所谓强聚焦是把加速器中环状磁铁各节的磁场梯度的符号安排成正负相同,这样安排便可以应用很大的磁场梯度[(27.9)所确定的n≈3600]。我们在27中已谈到,在梯度均匀的加速器中要求n<1, 否则,粒子束就会散焦,交叉磁场梯度符号的方法可以大大改进粒子运动轨道的径向的和轴向的稳定性,这就能使真空室的截面积缩小,也就是节省磁铁,降低加速器的造价。
第三部分 加速器聚焦
下面内容可参见科学出版社1958年出版,《原子能译丛基本粒子加速器》
《用横断透镜系统来使直线加速器中的粒子束聚焦的理论》苏联,沙尔沙诺夫(A.A.Шаршанов)著,本文系1956年5月全苏高能粒子物理会议上斯捷班诺夫(к.н.сгепанков)与沙尔沙诺夫(A.A…Шаршанов)报告的一部分。
二个在互相垂直方向交替地使束聚焦与散焦的横断面透镜系统的作用的探讨是与系数有周期变化的二级线性微分方程式的研究有关。假定外间磁场在空间的变化是周期性的,而且将粒子的加速以及粒子所造成的空间电荷的影响不考虑在内的话,那么便可得到上述方程式。由于粒子的加速与外界磁场的偏离周期性,运动方程式虽然还是线性的,但不能看作有周期变化系数的方程式。但是在一定条件下可以认为决定系数的参数是沿着加速器慢慢地变化的。空间电荷影响的考虑可归结成为有周期性系数的非线性方程式的研究。在这篇文章里研究周期性系数的与渐渐偏离周期性的系数的二次线性方程式以及考虑空间电荷影响而得来的有周期性系数的非线性方程式。我们采用了将上述方程式与较简单的有常数(或接近常数)系数的方程式相互比较的方法。所需的解与简单的方程式的解只在相隔等于系数的周期的那些电上相符合。非线性方程式只能近似地与简单方程式比较。现在来研究方程式

              2   
            d   y      2  
                   +Ω   (x)y=0,         (1)                       
                  2        
            dx   
  2           

这里Ω (x)是周期为T的周期性函数。
下面的求解过程是使用线性逼近法求解,
将x变化的区域划分成长度等于一个周期的间隔,即
-∞<…<-x i i+1

x -x =T(i=…-2,-1,0,1,2,…) (2)
i+1 i
在x=nT处的方程式(1)的解(这里n可以是任意正负整数)可表成

y(nT) y (T),y (T), y(0)
( )=( 10 01 )``( ) (3)
y(nT) y (T),y (T) y(0)
10 01
这里y (x)与y (x)是适合于下列起始条件的线性的独立解;起始条件是
10 01
y (0),y (0), 10 01 (4) } y (0),y (0)
01 10
若引入

            y   (T)+y`  (T)            
             10      01
      cosα=                         (a>0)                                  
                 2  
           
               y`  (T)            
                 10      
      ω=                sgn   y   (T)          (sgn   z≡│z│/z)                            
               y   (T)          01  
             01   





            y   (T)-y`  (T)            
             10      01
      η=                                             }    (5)            
                2y   (T)
                  01            
         
                 α
      ζ=                                                         
               2   2            
            ω   -η   sgn y   (T)
                      01

上式中,sgn表示阶跃函数,即函数的正负号由sgn决定,
例如:sgn z≡│z│/z,

   sgn   y   (T)=│y   (T)│/y   (T)
          01        01       01

y (T)表示函数在第0行第1列点的取值,y (T)表示函数在第1行第0列点的取值
01 10
并考虑到下列关系式能满足的话,
y (T)y (T)-y (T)y (T)=1
10 01 01 10
那么(3)式中行列的元可写成下列形式:
n

                                                       -ηξ      2  2             
        -ηξ       2    2        η            2   2    e  sin   ω  -η ξ                  
       e   [cos  ω   -η   ξ+           sin   ω  -η  ξ],         
                                    2   2                      2   2             
                              ω  -η                     ω  -η                                    

-ηκξ y(nT)
e ( )=
y`(nT)
2 -ηξ 2 2
ω e sin ω -η ζ -ηξ 2 2 η 2 2
,e [cos ω -η ξ+ sin ω -η ξ]
2 2 2 2
ω -η ω -η

            y(0)
          *(     )                                   (6)

y`(0)

                            2

这个式子的右半边是具有常数η与ω 的微分方程式
2
d y d y 2
+2η +ω y =0, (7)
2 2
dζ dζ
当起始条件是
d y (0) dy(0)
y (0)=y(0), = 时
dζ dx
在ζ=nζ地方的解。上式中,ζ表示x的正整数取值, y 表示y的加权平均值,我
2 2
们注意到η和ω 不单与依靠(2)式来划分的点的选择有关而且与Ω (x)的形状有关,
2
有可能Ω (x)合乎对称条件:
2 2
Ω (x +δ)=Ω (x -δ) (0≤δ≤T/2) (8)
i i+1
可以证明这时y (T)=y` (T),因而η=0, 从(6)式可以容易得到下式
10 01

y(nT)=Asin(nα+φ)
此处

                                   2         
               2	[y(0)η+y`(0)]
      A=    y    (0)+                                                          
                          2   2               
                ω   -η                 

                          2   2      
               y(0)     ω   -η
        tgφ=                                                         
                ηy(0)+y`(0)  

现在来探讨方程式
2
d y 2
+Ω (x)y=0, (9)
2
dx
2
此处Ω (x)是近于周期性的函数,用x (i=…-2,-1,0,1,2…)将x的变化区域分成能
0
将T 看作是函数的变化着的周期的x -x =T 各段。
i i+1 i i

对每段按下列式子引入α ,ω ,η 各个量:
i i i

            i           i`                     
              y   (x    )+y  (x    )            
                10   i+1    01  i+1  
      cosα  =                                                        
                        2  
                i`          
               y   (x   )            
                 10   i+1          i
      ω=                  sgn   y   (x   )                           
                 i                01    i+1
           y   (x   )  
             01  i+1                                  

          i          i`                                     
            y   (x   )-y   (x   )            
             10   i+1    01   i+1
      η  =                                                          
        i            i                
                 2y   (x   )
                    01   i+1         

                    α  
                      i
      ζ  =                                                          
        i        2   2       i     
              ω   -η   sgn y   (x   )
                        01   i+1

i i i i
这里y (x),y (x),y (x),y (x)是方程式(9)的线性独立解与其微商,并适合于起始条件
10 01 10 01
i i`
y (x )=1,y (x )=0;
10 i 10 i

        i            i`                                       
  y   (x   )=1,y    (x    )=0;       
    01   i       01   i

注:微商就是导数,
若考虑下列关系式能满足的话
i i i i
y (x )y (x )-y (x )y (x )=1
10 i+1 01 i+1 01 i+1 10 i+1

                   n-1                                                         

那么方程式(9)当x = ∑ T 时的解可能写成下式:
n i=0 i

n-1
-∑η ξ
i=0 i i y(0)
e ( )=
y`(0)
-η ξ n
i i 2 2
-η ξ η e sin ω -η ξ
i i 2 2 i 2 2 i i i
e [cos ω -η ξ + sin ω -η ξ ],
i i i 2 2 i i i 2 2
ω -η ω -η
n-1 i i i i
∏= -η ξ
i=0 i i 2 2
ω e sin ω -η ζ
i i i i -η ξ η
i i 2 2 i 2 2
,e [cos ω -η ξ + sin ω -η ξ ]
2 2 i i i 2 2 i i i
ω -η ω -η
i i i i

            y(0)
          *(     )                                  

y`(0)

                                        2  

这个式子的右半边是具有跳跃变化系数η(ζ)与ω (ζ)的方程式
2
d y d y 2
+2η(ζ) +ω (ζ) y =0, (10)
2 2
dζ dζ
当起始条件是
d y (0) dy(0)
y (0)=y(0), = 时
dζ dx

           n-1                                 

在自变量ζ=∑ ξ 处的解。
i=0 i
假使在每一区间(x ,x )中函数Ω (x)是符合于(8)那样对称于中心的话,
i i+1
2
那么η(ζ)≡0, 因为系数η(ζ)与ω (ζ)是慢慢变化着的跳跃函数,所以将它们换做近似于它们的平滑变化函数时,方程式(10)的解变化不大。但是那样一来在满足一定条件下便可以采用准经典式近似方法或其他方法来解方程式。
2
假定将η(ζ)与ω (ζ)换成平滑变化函数后,

       ζ                               
   -∫    ηdζ
        0           

令y =e ,代入方程式(10),那么可得u的方程式

                  2
               d   u     2
             +χ    (ζ)u=0                     (11)         
                  2           
            dζ          

2 2 2
这里χ =ω -η -dη/dζ,若用准经典式近似法,则可得u的解

             -1/2
           χ   (ζ)

u=A sin(∫χdζ+φ)
-1/2
χ (0)
式中
2
2 [η(0)y(0)+y`(0)]
A= y (0)+
2 2
ω (0)-η (0)

                                           }    (12)
               2        2              
    y(0)     ω    (0)-η    (0)

tgφ=
η(0)y(0)+y`(0)
n- 1
为了从这个式子得到方程式(10)在x= ∑ T 处的解,
i=0 i

               n-1    

要找到 y 在ζ=∑ ξ 处的解并将它除以
i=0 i

    n-1                
    -∑ξ   η          ζ           
     i=0  i   i     -   ∫   ηdζ       
 e              ≌e    0      

结果可得到
-1/2
χ (x) dζ
y(x)=A sin( ∫ χ dx+φ) (13)
-1/2 dx
χ (0)
从这里可以导出振幅变化的规律

          χ(0)                  [η(0)y(0)+y`(0)]   

y (x)= y (0)+ (14)
χ(x) 2 2
ω (0)-η (0)

在工作中应用了上述式子来研究具体的聚焦系统。 现在来研究空间电荷对近轴的、无穷的、连续的粒子束运动的影响。我们将推演简单聚焦系统的运动方程式。这个系统是由彼此紧密连接的相同的磁四极矩透镜所构成。这种计算法可以不经本质上的变动而应用到复杂的聚焦系统上去。 假定在一个磁四极矩透镜中磁场是
H =0,H =H z,H =H y (15)
z y 0 z 0
而在相邻的透镜中
H =0,H =-H z,H =-H y (15) z y 0 z 0 这里H 是磁场梯度,x轴是聚焦系统的轴。不考虑空间电荷的话,在这样场中一个近轴 0 粒子在xOy与xOz平面中的运动方程式是有周期性系数的线性方程式。假定这个方程式的解是稳定的即│cosα│<1(参见(5)式)。此外又假设α近于零。在(15)及(15)式所规定的磁场中,束不可能具有轴对称,但能对xOy与xOz平面对称。假定这样的对称存在,并且在任何一x值处束的截面式椭圆形(其中轴为x的函数)。再假设粒子全部时间处在外层并以起始条件y(0)≠0,y(0)≠0,而z(0)=0与z(0)=0为表征。这情况下粒子在xOy平面内运动。假定起始条件是y(0)=0,y(0)=0,而z(0)≠0,z(0)≠0, 那么粒子将在xOz平面内运动。假定在束中有这些粒子存在。我们来探讨x坐标相等的这二种粒子。为它们推演运动方程式。对在xOy平面中运动的外层粒子来说,在一个透镜中的运动方程式是
mdv /dt=eE +eH yv /c;
x x 0 y

mdv /dt=eE +eH yv /c;
y y 0 x
这里x,y是粒子的座标;E 和E 是空间电荷产生的场的分量。因为束是近轴的,
x y
也就是说它的横断方向尺寸很小而且速度的横向分量比纵向的小得多,所以可以略去方程式中E 与yv 那些量。那么从第一式得v =常数,而从第二式
x y x

 2     2                     2                    

d y/dx +eH y/mcv =eE /mv , (16)
0 x y x
对在xoz平面中运动的外层粒子来说

 2     2                     2                    

d y/dx +eH z/mcv =eE /mv , (17)
0 x z x
这里x是粒子的座标,现来算一下分量E 与E ,
y z
从上述假设可以认为它们等于电荷均匀分布的椭圆面的圆柱体在那些点上所产生的电场强度:
E =4πρzy/(y+z),E =4πρzy/(y+z),
y z
这里y与z是半轴,而ρ是电荷密度(我们假定ρ只与x有关而与yz无关)。
2
因为ρπzy=ρ s ,式中ρ 是在x=0处电荷密度,而s =πr 是当x=0时的截
0 0 0 0
面积,所以
2 2
E =4πρ r /(y+z),E =4πρ r /(y+z), (18)
y 0 0 z 0 0
将E 与E 代入(16)(17)式并将方程式推广到x变化的全部区域内,
y z
可得下列联合方程式:

                 2       
               d   y      2          q
             +Ω     (x)y=             
                  2                  y+z
            dx           
                                     }     (19)
                 2       
               d   y      2          q
             -Ω     (x)y=             
                  2                  y+z
               dx   

这里对一个透镜来说
eH
2 0
Ω =
mcv
x
对另一个来说
eH
2 0
Ω =-
mcv
x

                   2        
              4πρ   e     4Ie
                   0
q=             =             
                   2            2
                mv         mcv  
                   x            x
                                2

(I是束流), 这样,问题便归结成研究Ω (x)是周期函数,而q=常数的联立方程式(19)。
2 2
在更复杂的系统中Ω (x)更复杂了。因此我们假设系数Ω (x)只适合式(8)所规定的对称条件来研究较一般的情况。将(19)式写成等效的联立积分方程式:

                                  qy   (x)dx           qy   (x)dx  
                               x     10                  01        

y(x)=y(0)y (x)+y(0)y (x)+y (x)∫ -y (x) ∫ 10 01 01 0 y+z 10 y+z } (20) qz (x)dx qz (x)dx x 10 01 z(x)=z(0)z (x)+y(0)z (x)+z (x)∫ -y (x) ∫
10 01 01 0 y+z 10 y+z
这里y (x),y (x),z (x)与z (x)是当方程式(19)没有右半边而且起始条件适合式(4)
10 01 10 01
时的线性独立解。显然,假定把同这些解近似的函数代入方程式(20),那么y(x)与z(x)不会变得很厉害。由于假定α是小的,这种近似函数是函数

y (x), z (x),α y (x)/ω T,α z (x)/ω T,
10 10 01 1 01 2
它们适合方程式
2 2
d y α
+ y =0, (21)
2 2
dx T
与起始条件

y (0)=1, y `(0)=0;
10 10

                    ω    T       
                        1        

y (0)=1, y `(0)=
01 01 α

z (0)=1, z `(0)=0;
10 10

                    ω    T       
                        2        

z (0)=1, z `(0)=
01 01 α
这里T是函数Ω(x)的周期,而

          y`   (T)      
            10         

ω = - sgn y (T)
1 y (T) 01
01
}(2

锐单商城拥有海量元器件数据手册IC替代型号,打造电子元器件IC百科大全!

相关文章