最初为控制模型火车而设计, 积分器斜向上或下,以预设比率响应输入直流水平的改变,并保持电路输入电压水平。
运放积分器可以斜上升到饱和状态,放电式开关会重置积分器。或者,三角波发生器应用中,输入转换积分器,使其冲高或跌落。通过在线常用电路的许多研究发现运放积分器保持预设持续电压是没有意义的。本设计方案描述了一个单电源电路,电路输出斜坡上升或下降的线性电压,响应0到VCC正直流输入电压的阶梯改变。如图1中数值,输出斜坡的dV/dt可调整到1V/minut,不依赖于输入阶梯的幅值,终止于与输入阶梯电压近似相等的恒定直流等级。任何更多直流输入电压的改变引起以预设dV/dt速度,输出斜坡上升或下降到新直流输入电压。实际上,电路是一个限幅的恒定斜率积分器。
电路使用NI公司轨对轨输入/输出四运放LMC6484。轨对轨的特性使其容易使用,低漏输入适用于长期不变得积分器,最大3mV输入偏置电压更是出色。线性锥形R1设置输入电压,从而在斜坡末端决定最后输出电压。当输出斜坡上升或下降时,1A的输出分别在VCC或地饱和。
无极性电容C1和线性锥形电位器R2决
定积分器IC1B的时间常数。调整域为0.5V/msec到1V/minu。IC1B的参考偏置为108
mV,其来源于为分隔R7和R8的单倍增益缓冲器IC1D。切断时,R6确保不会超过IC1B的输入,C1通过IC1B的输入和输出放电,R2最小值时,IC1B的输出不会过分负载回IC1D的输出。
R3和R4隔开饱和的IC1A输出到几乎100 mV,无负载情况下为108mV左右偏置。这个分隔引发R5上压降几乎为20
mV,以积分器C1和R2设置的速率向上或向下回转IC1B;运放可能的3mV输入偏置电压加上最小化偏置效果,20
mV是合适的。当IC1B的输出电压斜坡达到R1插头的输入电压时,倘若循环负反馈维持积分器IC1B的输出与输入电压相等,IC1A脱离饱和,并重置到几乎2.5V。这个动作设置积分器斜坡终端电压的界限。对驱动发动机电路(没有显示),IC1C可以不用,或像图片所示,用一个三角波驱动其转换IC1B的直流电压或斜坡到相应的
PWM (脉宽调制)信号。
R5消除偏压公差产生的微分误差,它提供了25°C下Ic1B的3V最大输入偏置电压和允许最慢dV/dt的20mV输入幅值的折衷。图中值导致几乎1V/minute的最大时间或5minutes全速达到5V
VCC。如果需要更长时间可以提高VCC到15V,用调整偏置或通过使用并联无极性电容增加C1值的方式。或者,虽然电位器大于1
MΩ值的选择很少,但还是可以增加R2的值来实现。
如果应用不需要长时间常数或如果使用上述方法增加时间常数,可以用IC1B更高差分输入的代价消除R5,相对的积分更快。也可以消除IC1D和直接连接IC1B管脚5的R7、R8电阻偏置分隔器,但是为使微分误差最小,电阻误差会变得更严格