锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

CRM数据采集

时间:2022-11-30 00:30:00 2静态交流断电延时继电器zsj

[root@master ~]# jps 87281 SecondaryNameNode 87072 NameNode 93842 Application 86052 ResourceManager 95502 Jps [root@master ~]# ls ac.sh                                        模板 anaconda-ks.cfg                              视频 dump.rdb                                     图片 initial-setup-ks.cfg                         文档 mysql57-community-release-el7-10.noarch.rpm  下载 ${system:java.io.tmpdir}                     音乐 zookeeper.out                                桌面 公共 [root@master ~]# mysql -u root -p123456 mysql: [Warning] Using a password on the command line interface can be insecure. Welcome to the MySQL monitor.  Commands end with ; or \g. Your MySQL connection id is 838 Server version: 5.7.37 MySQL Community Server (GPL)  Copyright (c) 2000, 2022, Oracle and/or its affiliates.  Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.  Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.  mysql> create database crm default character set utf8mb4 default collate utf8mb4_general_ci; Query OK, 1 row affected (0.00 sec)  mysql> use crm; Database changed mysql> DROP TABLE IF EXISTS `usertag`; rchar(255)      ,packg varchar(255)      ,conpot varchar(255)     ,resi_grid_id varchar(255)     ,resi_county_id varchar(255) )  ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; Query OK, 0 rows affected, 1 warning (0.00 sec)  mysql> CREATE TABLE `usertag` (     ->     mdn varchar(255)      ->     ,name varchar(255)      ->     ,gender varchar(255)      ->     ,age int(10)     ->     ,id_number varchar(255)      ->     ,number_attr varchar(255)      ->     ,trmnl_brand varchar(255)      ->     ,trmnl_price varchar(255)      ->     ,packg varchar(255)      ->     ,conpot varchar(255)     ->     ,resi_grid_id varchar(255)     ->     ,resi_county_id varchar(255)     -> )  ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; Query OK, 0 rows affected (0.01 sec)  mysql> DROP TABLE IF EXISTS `scenic_boundary`; Query OK, 0 rows affected, 1 warning (0.00 sec)  mysql> CREATE TABLE  `scenic_boundary` (     ->     scenic_id varchar(255)   ,     ->     scenic_name varchar(255)  ,     ->     boundary text      -> ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; Query OK, 0 rows affected (0.00 sec)  mysql> DROP TABLE IF EXISTS `admin_code`; archar(255)       ,economic_belt varchar(255)        ,city_feature1 varchar(255)   ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; Query OK, 0 rows affected, 1 warning (0.00 sec)  mysql> CREATE TABLE `admin_code` (     ->     prov_id varchar(255)       ->     ,prov_name varchar(255)       ->     ,city_id varchar(255)      ->     ,city_name varchar(255)       ->     ,county_id varchar(255)       ->     ,county_name varchar(255)       ->     ,city_level varchar(255)       ->     ,economic_belt varchar(255)        ->     ,city_feature1 varchar(255)       -> ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; Query OK, 0 rows affected (0.00 sec)  mysql> LOAD DATA LOCAL INFILE '/usr/local/soft/data/ctyun/crm/usertag.txt' INTO TABLE usertag FIELDS TERMINATED BY ',' ; Query OK, 1294080 rows affected (7.31 sec) Records: 1294080  Deleted: 0  Skipped: 0  Warnings: 0  mysql> LOAD DATA LOCAL INFILE '/usr/local/soft/data/ctyun/crm/scenic_boundary.txt' INTO TABLE scenic_boundary FIELDS TERMINATED BY '|' ; Query OK, 4 rows affected (0.00 sec) Records: 4  Deleted: 0  Skipped: 0  Warnings: 0  mysql> LOAD DATA LOCAL INFILE '/usr/local/soft/data/ctyun/crm/ssxdx.txt' INTO TABLE admin_code FIELDS TERMINATED BY ',' ; Query OK, 2898 rows affected, 2897 warnings (0.02 sec) Records: 2898  Deleted: 0  Skipped: 0  Warnings: 2897
[root@master ~]# hive --service metastore Starting Hive Metastore Server  [ods@master ~]$ hive  Logging initialized using configuration in jar:file:/usr/local/soft/hive-1.2.1/lib/hive-common-1.2.1.jar!/hive-log4j.properties hive> use ods; OK Time taken: 0.491 seconds hive> DROP TABLE IF EXISTS ods.ods_usertag_d; OK Time taken: 0.073 seconds hive> CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_usertag_d (     >     mdn string comment 手机号大写MD5加密'       >     ,name string comment '姓名'       >     ,gender string comment 性别,1男2女       >     ,age string comment '年龄'       >     ,id_number string comment 证号       >     ,number_attr string comment 号码归属地       >     ,trmnl_brand string comment 终端品牌         >     ,trmnl_price string comment 终端价格     >     ,packg string comment '套餐'       >     ,conpot string comment 消费潜力       >     ,resi_grid_id string comment 常住地网格       >     ,resi_county_id string comment 常住区县       > )      > comment  用户画像表     > PARTITIONED BY (     >     day_id string comment '天分区'       > )     > ROW FORMAT DELIMITED 
    >     FIELDS TERMINATED BY '\t' 
    > STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
    >     OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
    > location '/daas/motl/ods/ods_usertag_d'; 
OK
Time taken: 0.862 seconds
hive> DROP TABLE IF EXISTS ods.ods_scenic_boundary;
OK
Time taken: 0.023 seconds
hive> CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_scenic_boundary (
    >     scenic_id string comment '景区id'  
    >     ,scenic_name string comment '景区名称'  
    >     ,boundary string comment '景区边界'  
    > ) 
    > comment  '景区配置表'
    > ROW FORMAT DELIMITED 
    >     FIELDS TERMINATED BY '\t' 
    > STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
    >     OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
    > location '/daas/motl/ods/ods_scenic_boundary'; 
OK
Time taken: 0.111 seconds
hive> DROP TABLE IF EXISTS ods.ods_admincode;
OK
Time taken: 0.016 seconds
hive> CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_admincode (
    >     prov_id string comment '省id'  
    >     ,prov_name string comment '省名称'  
    >     ,city_id string comment '市id'  
    >     ,city_name string comment '市名称'  
    >     ,county_id string comment '区县id'  
    >     ,county_name string comment '区县名称'  
    >     ,city_level string comment '城市级别,一级为1;二级为2...依此类推'   
    >     ,economic_belt string comment 'BJ为首都经济带、ZSJ为SJ为长三角经济带、DB为东北经济带、HZ为华中经济带、HB为华北经济带、XN为西南经济带'  N为华南经济带、XB为西北经济 
    >     ,city_feature1 string comment 'NL代表内陆、YH代表沿海'  
    > ) 
    > comment  '行政区配置表'
    > ROW FORMAT DELIMITED 
    >     FIELDS TERMINATED BY '\t' 
    > STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
    >     OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
    > location '/daas/motl/ods/ods_admincode'; 
OK
Time taken: 0.049 seconds
hive> alter table ods.ods_usertag_d add if not exists partition(day_id='20220530');
OK
Time taken: 0.209 seconds
[ods@master ~]$ ls
ctyun  flume  students.txt
[ods@master ~]$ mkdir scripts
[ods@master ~]$ cd scripts/
[ods@master scripts]$ ls
[ods@master scripts]$ pwd
/home/ods/scripts
[ods@master scripts]$ vim datax-crm-usertag-mysql-to-hive.json 

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://master:3306/crm"
                                ],
                                "table": [
                                    "usertag"
                                ],
                            }
                        ],
                        "column": ["*"],
                        "password": "123456",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://master:9000",
                        "fileType": "text",
                        "path": "/daas/motl/ods/ods_usertag_d/day_id=${day_id}",
                        "fileName": "data",
                        "column": [
                            {
                                "name": "mdn",
                                "type": "STRING"
                            },
                            {
                                "name": "name",
                                "type": "STRING"
                            },
                            {
                                "name": "gender",
                                "type": "STRING"
                            },
                            {
                                "name": "age",
                                "type": "INT"
                            },
                            {
                                "name": "id_number",
                                "type": "STRING"
                            },
                            {
                                "name": "number_attr",
                                "type": "STRING"
                            },
                            {
                                "name": "trmnl_brand",
                                "type": "STRING"
                            },
                            {
                                "name": "trmnl_price",
                                "type": "STRING"
                            },
                            {
                                "name": "packg",
                                "type": "STRING"
                            },
                            {
                                "name": "conpot",
                                "type": "STRING"
                            },
                            {
                                "name": "resi_grid_id",
                                "type": "STRING"
                            },
                            {
                                "name": "resi_county_id",
                                "type": "STRING"
                            }
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": "\t"
                    }
                }
            }
        ],
        "setting": {
            "errorLimit": {
                "percentage": 0,
                "record": 0
            },
            "speed": {
                "channel": 4,
                "record": 1000
            }
        }
    }
}

[ods@master scripts]$ datax.py -p "-Dday_id=20220530" datax-crm-usertag-mysql-to-hive.json
2022-05-31 21:48:09.657 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2022-05-31 21:47:58
任务结束时刻                    : 2022-05-31 21:48:09
任务总计耗时                    :                 11s
任务平均流量                    :           17.78MB/s
记录写入速度                    :         129408rec/s
读出记录总数                    :             1294080
读写失败总数                    :                   0

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://master:3306/crm"
                                ],
                                "table": [
                                    "admin_code"
                                ],
                            }
                        ],
                        "column": ["*"],
                        "password": "123456",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://master:9000",
                        "fileType": "text",
                        "path": "/daas/motl/ods/ods_admincode",
                        "fileName": "data",
                        "column": [
                            {
                                "name": "prov_id",
                                "type": "STRING"
                            },
                            {
                                "name": "prov_name",
                                "type": "STRING"
                            },
                            {
                                "name": "city_id",
                                "type": "STRING"
                            },
                            {
                                "name": "city_name",
                                "type": "STRING"
                            },
                            {
                                "name": "county_id",
                                "type": "STRING"
                            },
                            {
                                "name": "county_name",
                                "type": "STRING"
                            },
                            {
                                "name": "city_level",
                                "type": "STRING"
                            },
                            {
                                "name": "economic_belt",
                                "type": "STRING"
                            },
                            {
                                "name": "city_feature1",
                                "type": "STRING"
                            }
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": "\t"
                    }
                }
            }
        ],
        "setting": {
            "errorLimit": {
                "percentage": 0,
                "record": 0
            },
            "speed": {
                "channel": 1,
                "record": 1000
            }
        }
    }
}

[ods@master scripts]$ vim datax-crm-admin-code-mysql-to-hive.json
[ods@master scripts]$ datax.py datax-crm-admin-code-mysql-to-hive.json
2022-05-31 21:56:20.946 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2022-05-31 21:56:09
任务结束时刻                    : 2022-05-31 21:56:20
任务总计耗时                    :                 11s
任务平均流量                    :            8.69KB/s
记录写入速度                    :            289rec/s
读出记录总数                    :                2898
读写失败总数                    :                   0

 {
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://master:3306/crm"
                                ],
                                "table": [
                                    "scenic_boundary"
                                ],
                            }
                        ],
                        "column": ["*"],
                        "password": "123456",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://master:9000",
                        "fileType": "text",
                        "path": "/daas/motl/ods/ods_scenic_boundary",
                        "fileName": "data",
                        "column": [
                            {
                                "name": "scenic_id",
                                "type": "STRING"
                            },
                            {
                                "name": "scenic_name",
                                "type": "STRING"
                            },
                            {
                                "name": "boundary",
                                "type": "STRING"
                            }
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": "\t"
                    }
                }
            }
        ],
        "setting": {
            "errorLimit": {
                "percentage": 0,
                "record": 0
            },
            "speed": {
                "channel": 1,
                "record": 1000
            }
        }
    }
}

[ods@master scripts]$ vim datax-crm-admin-code-mysql-to-hive.json
[ods@master scripts]$ datax.py datax-crm-admin-code-mysql-to-hive.json
2022-05-31 21:58:42.644 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2022-05-31 21:58:31
任务结束时刻                    : 2022-05-31 21:58:42
任务总计耗时                    :                 11s
任务平均流量                    :            1.48KB/s
记录写入速度                    :              0rec/s
读出记录总数                    :                   4
读写失败总数                    :                   0
hive> show tables;
OK
ods_admincode
ods_oidd
ods_scenic_boundary
ods_usertag_d
Time taken: 0.146 seconds, Fetched: 4 row(s)
hive> select * from ods_admincode limit 10;
OK
811	北京市	81101	北京市	8110101	东城区	1	BJ   NL
811	北京市	81101	北京市	8110102	西城区	1	BJ   NL
811	北京市	81101	北京市	8110105	朝阳区	1	BJ   NL
811	北京市	81101	北京市	8110106	丰台区	1	BJ   NL
811	北京市	81101	北京市	8110107	石景山区	1    BJ	NL
811	北京市	81101	北京市	8110108	海淀区	1	BJ   NL
811	北京市	81101	北京市	8110109	门头沟区	1    BJ	NL
811	北京市	81101	北京市	8110111	房山区	1	BJ   NL
811	北京市	81101	北京市	8110112	通州区	1	BJ   NL
811	北京市	81101	北京市	8110113	顺义区	1	BJ   NL
Time taken: 0.24 seconds, Fetched: 10 row(s)
hive> select * from ods_scenic_boundary limit 10;
OK
001	蜀山森林公园	117.18294 31.848502,117.183571 31.848315,117.185324 31.847719,117.185799 31.8474,117.187003 31.846552,117.187482 31.846443,117.187654 31.846443,117.1877 31.846153,117.187741 31.845951,117.188478 31.843394,117.188152 31.843348,117.187203 31.843327,117.18688 31.843258,117.186203 31.843029,117.185563 31.842814,117.185444 31.842739,117.185347 31.842647,117.185365 31.842395,117.185802 31.841367,117.186252 31.840176,117.18922 31.840389,117.18966 31.839601,117.189852 31.83855,117.189857 31.838151,117.189802 31.837929,117.189749 31.837721,117.18967 31.837522,117.189554 31.837306,117.189328 31.837054,117.189029 31.836728,117.187515 31.835252,117.186092 31.833766,117.185817 31.833364,117.185698 31.833025,117.185587 31.832613,117.185549 31.832352,117.1855 31.831892,117.183536 31.831911,117.181442 31.831921,117.179594 31.831922,117.179543 31.831937,117.179513 31.831984,117.179447 31.832904,117.179365 31.833851,117.179359 31.834226,117.179377 31.834357,117.179423 31.834583,117.179441 31.834818,117.179539 31.835264,117.179518 31.835285,117.179482 31.835286,117.179177 31.83521,117.17905 31.835145,117.178926 31.835042,117.178826 31.834964,117.178692 31.834873,117.178573 31.834826,117.178433 31.834806,117.17812 31.83483,117.177907 31.83485,117.177689 31.834853,117.176599 31.834723,117.175869 31.834604,117.175743 31.834585,117.175596 31.834579,117.175455 31.83459,117.174738 31.834783,117.174319 31.83493,117.174001 31.835057,117.173307 31.835207,117.17306 31.835283,117.172288 31.835696,117.17186 31.835921,117.171486 31.836145,117.171458 31.836187,117.171446 31.836235,117.171443 31.836499,117.171424 31.836642,117.171328 31.836802,117.170525 31.83756,117.170002 31.838087,117.16975 31.838502,117.169349 31.838871,117.169232 31.839137,117.169105 31.839321,117.168831 31.839918,117.168711 31.840646,117.168718 31.840781,117.168743 31.840878,117.168803 31.840972,117.168849 31.841042,117.167447 31.841288,117.167357 31.841272,117.167307 31.841206,117.167118 31.840858,117.167035 31.840808,117.166945 31.840801,117.166316 31.840941,117.165382 31.840924,117.163677 31.841549,117.164266 31.843439,117.164404 31.843638,117.16484 31.844064,117.165635 31.844817,117.166243 31.845405,117.166744 31.846003,117.167006 31.846454,117.167124 31.846723,117.167577 31.847837,117.167838 31.848189,117.168456 31.848893,117.168673 31.849098,117.168925 31.8493,117.169225 31.849466,117.1696 31.849624,117.17101 31.850006,117.17191 31.850212,117.174397 31.850708,117.174608 31.850733,117.174976 31.850738,117.176838 31.850647,117.177117 31.850588,117.1775 31.850484,117.179331 31.849864,117.179775 31.849573,117.179986 31.849464,117.181193 31.849009,117.18294 31.848502
002	合肥滨湖国家森林公园	117.377397 31.717177,117.377407 31.717289,117.377157 31.718507,117.37691 31.718758,117.376811 31.719924,117.376717 31.72015,117.375601 31.722152,117.375617 31.722659,117.3754 31.722938,117.374818 31.723508,117.3737 31.724669,117.3732 31.725373,117.372356 31.726333,117.370446 31.728541,117.371455 31.729741,117.371782 31.730043,117.373531 31.730394,117.374432 31.730389,117.375282 31.730697,117.375911 31.730842,117.376092 31.730905,117.376218 31.730987,117.376497 31.731762,117.37653 31.732035,117.376483 31.732405,117.376521 31.732631,117.376701 31.732703,117.376936 31.73309,117.376842 31.733149,117.376634 31.733165,117.376428 31.733251,117.376261 31.733462,117.376279 31.733805,117.376637 31.734146,117.377173 31.733857,117.377531 31.73455,117.377766 31.734716,117.377968 31.734687,117.378252 31.73442,117.37918 31.733746,117.381057 31.733199,117.382329 31.73278,117.382715 31.732766,117.382994 31.732871,117.383455 31.73351,117.383943 31.733824,117.384298 31.733934,117.38456 31.733957,117.385027 31.733765,117.385649 31.733238,117.386298 31.732865,117.386872 31.732752,117.387242 31.732501,117.387496 31.732204,117.388178 31.731732,117.389758 31.731064,117.392312 31.729517,117.393728 31.728404,117.394036 31.728103,117.394897 31.726894,117.395713 31.723494,117.397966 31.722016,117.398352 31.721578,117.398529 31.720976,117.398556 31.720355,117.398711 31.719588,117.398953 31.718794,117.399538 31.718087,117.400276 31.717487,117.400541 31.717677,117.400712 31.717632,117.40124 31.716998,117.401938 31.716419,117.403357 31.715479,117.407402 31.713262,117.407962 31.712904,117.408448 31.712502,117.408933 31.711017,117.40902 31.711051,117.409268 31.710336,117.409477 31.709795,117.409861 31.7086,117.410041 31.708546,117.410134 31.708512,117.410244 31.708159,117.408752 31.708186,117.407785 31.708313,117.406588 31.708692,117.405363 31.70912,117.399669 31.711215,117.398584 31.711379,117.397553 31.711561,117.396225 31.711936,117.395066 31.71212,117.394063 31.712269,117.393275 31.712572,117.392014 31.712974,117.390799 31.713152,117.390119 31.713221,117.389702 31.713213,117.388875 31.713202,117.388259 31.713227,117.38772 31.713295,117.387149 31.713428,117.386467 31.713773,117.386055 31.713947,117.385617 31.714213,117.385196 31.714407,117.384722 31.714574,117.384222 31.71469,117.383804 31.714746,117.383356 31.71477,117.382384 31.714836,117.381417 31.714943,117.380711 31.715157,117.378783 31.716066,117.378123 31.716339,117.377109 31.71675,117.377397 31.717177
003	合肥植物园	117.19898 31.877998,117.19891 31.87767,117.198947 31.87746,117.198937 31.877346,117.19873 31.8772,117.198457 31.877052,117.19829 31.877002,117.198218 31.876979,117.198194 31.876936,117.198191 31.876888,117.198218 31.876779,117.198296 31.876686,117.198419 31.876629,117.198521 31.87651,117.198553 31.876319,117.19862 31.875936,117.198639 31.875765,117.198577 31.875542,117.198325 31.875212,117.198172 31.875032,117.198046 31.874841,117.197928 31.874711,117.197904 31.87462,117.197934 31.87449,117.198044 31.87433,117.198167 31.874144,117.198164 31.874059,117.198001 31.873458,117.197944 31.873021,117.197636 31.872754,117.19722 31.872419,117.196791 31.872083,117.196654 31.871943,117.196611 31.871866,117.196614 31.871811,117.19663 31.87176,117.196729 31.871597,117.196796 31.871496,117.196897 31.871425,117.196975 31.871391,117.197016 31.871367,117.197023 31.871324,117.197038 31.871262,117.197077 31.871239,117.197132 31.871237,117.197191 31.871261,117.197238 31.871267,117.197279 31.871247,117.197338 31.871211,117.197398 31.871139,117.19761 31.871068,117.197748 31.870939,117.197844 31.870754,117.197932 31.870511,117.198018 31.870417,117.198173 31.870275,117.198242 31.870182,117.198329 31.870168,117.198415 31.870171,117.198603 31.870173,117.198651 31.870101,117.198742 31.869981,117.198808 31.869818,117.198837 31.869615,117.198843 31.869431,117.198818 31.869151,117.198774 31.868871,117.198743 31.868696,117.198643 31.868406,117.198645 31.868252,117.198613 31.86813,117.198549 31.868026,117.198534 31.867931,117.198537 31.86788,117.198558 31.867848,117.198592 31.867823,117.198678 31.86781,117.198883 31.867805,117.199083 31.86779,117.199158 31.867734,117.199235 31.867514,117.199213 31.867152,117.198654 31.866549,117.198401 31.865911,117.198627 31.865457,117.198774 31.865312,117.199256 31.865125,117.199205 31.864806,117.198772 31.864112,117.198617 31.863757,117.198278 31.863575,117.197818 31.863107,117.197419 31.862576,117.197325 31.862118,117.197411 31.861756,117.19768 31.861446,117.197946 31.861226,117.198486 31.862129,117.19884 31.862574,117.19918 31.862806,117.199445 31.862928,117.199726 31.86303,117.200027 31.863103,117.200802 31.863188,117.202679 31.863398,117.203377 31.863471,117.203554 31.863487,117.203633 31.863529,117.20368 31.863595,117.203699 31.863767,117.203184 31.86758,117.20322 31.86796,117.203381 31.868234,117.203873 31.868617,117.205281 31.8696,117.206125 31.869856,117.207426 31.869908,117.20828 31.86985,117.20924 31.869776,117.209381 31.869787,117.209484 31.869825,117.209571 31.869884,117.209642 31.869975,117.209714 31.870232,117.209713 31.870293,117.209674 31.870355,117.209548 31.87039,117.209156 31.870451,117.209038 31.870478,117.208947 31.870542,117.208877 31.870648,117.208732 31.870829,117.20867 31.871054,117.208335 31.871317,117.208661 31.872015,117.208419 31.872161,117.208343 31.872585,117.206962 31.873424,117.20693 31.873483,117.206935 31.873556,117.206962 31.873634,117.207399 31.874481,117.209137 31.873808,117.209227 31.873779,117.209329 31.87379,117.209929 31.874118,117.210702 31.874494,117.210739 31.874577,117.210755 31.874667,117.210673 31.874721,117.210584 31.874757,117.206398 31.876371,117.206484 31.87654,117.206577 31.876931,117.206625 31.877239,117.206652 31.877446,117.206629 31.877623,117.206531 31.877851,117.206356 31.878059,117.206219 31.87824,117.206132 31.878304,117.205957 31.878365,117.20581 31.878448,117.205615 31.878549,117.205421 31.878601,117.205261 31.878668,117.205041 31.878708,117.204823 31.878705,117.204605 31.878682,117.204525 31.878678,117.203644 31.879382,117.203491 31.879497,117.203453 31.879605,117.203428 31.879681,117.203377 31.879752,117.203286 31.879813,117.203199 31.879823,117.203056 31.879823,117.202908 31.879842,117.20279 31.879883,117.202618 31.879973,117.202541 31.880059,117.202528 31.880117,117.202473 31.880187,117.202438 31.880211,117.202347 31.880244,117.20224 31.88025,117.202162 31.880257,117.202076 31.880317,117.201958 31.880355,117.201754 31.880399,117.20167 31.880437,117.201583 31.880437,117.201469 31.880436,117.20133 31.880405,117.201219 31.8804,117.201195 31.88039,117.20119 31.880373,117.201192 31.880333,117.201242 31.88004,117.201149 31.879957,117.201104 31.879886,117.201076 31.879798,117.201074 31.8797,117.201107 31.87963,117.201098 31.879495,117.200992 31.879306,117.200973 31.879148,117.200934 31.878965,117.200883 31.878862,117.200768 31.878784,117.200451 31.878658,117.200156 31.878551,117.199754 31.878437,117.199572 31.878463,117.19942 31.878489,117.199289 31.878493,117.199179 31.878485,117.199059 31.87846,117.199003 31.878398,117.19898 31.877998
004	紫蓬山国家森林公园	117.017107 31.730838,117.01708 31.730822,117.017046 31.73082,117.016687 31.730879,117.016422 31.730918,117.016365 31.730914,117.016309 31.730902,117.016217 31.730869,117.016139 31.730821,117.016109 31.730796,117.016065 31.730741,117.01561 31.729113,117.015585 31.729055,117.01556 31.728997,117.015514 31.728951,117.015496 31.728939,117.015468 31.728927,117.015383 31.728897,117.015216 31.728837,117.014947 31.72874,117.014709 31.728654,117.014432 31.728554,117.014199 31.728447,117.014039 31.728341,117.014008 31.72832,117.01398 31.72829,117.013945 31.728247,117.013834 31.728116,117.013681 31.727931,117.013586 31.727815,117.013232 31.727338,117.013211 31.727294,117.013212 31.727234,117.013188 31.727056,117.013147 31.726909,117.013055 31.726679,117.012998 31.726569,117.01293 31.726491,117.012879 31.726432,117.012741 31.72635,117.012715 31.726316,117.01269 31.726274,117.012619 31.726102,117.012609 31.726067,117.012623 31.726018,117.01265 31.725969,117.012658 31.725951,117.012661 31.725925,117.012653 31.725895,117.012632 31.725842,117.012612 31.725791,117.012596 31.725767,117.012578 31.725746,117.012552 31.725729,117.01242 31.725667,117.012311 31.725622,117.011847 31.72551,117.011605 31.725457,117.01155 31.72545,117.011507 31.725451,117.011464 31.725459,117.011414 31.725467,117.011362 31.725473,117.01133 31.725473,117.011301 31.725469,117.011276 31.72546,117.01126 31.725448,117.011244 31.725432,117.011233 31.725416,117.011214 31.725399,117.011182 31.725389,117.011124 31.725387,117.011068 31.725382,117.011023 31.725371,117.010993 31.725359,117.010976 31.725346,117.010967 31.725331,117.010959 31.725314,117.010925 31.725256,117.01089 31.725215,117.010509 31.724876,117.007488 31.722214,117.007106 31.721889,117.007015 31.721824,117.006928 31.72179,117.006794 31.721766,117.00661 31.721753,117.00649 31.721756,117.006431 31.721763,117.005927 31.721817,117.005594 31.721868,117.005344 31.721932,117.00516 31.722011,117.005076 31.722067,117.005013 31.722131,117.004751 31.722542,117.004704 31.722598,117.00466 31.722633,117.004597 31.722675,117.004508 31.722716,117.004416 31.72274,117.004309 31.722752,117.004013 31.722758,117.003629 31.722713,117.00288 31.722601,117.002845 31.722595,117.002791 31.722573,117.002755 31.722553,117.002727 31.722521,117.002701 31.722464,117.002687 31.722407,117.002647 31.721465,117.002595 31.720973,117.002552 31.720694,117.002547 31.720601,117.002551 31.720448,117.002535 31.720382,117.002503 31.720323,117.002467 31.720285,117.002419 31.720253,117.002391 31.720221,117.002376 31.720179,117.002395 31.720037,117.002419 31.719917,117.002405 31.719861,117.002384 31.719814,117.00236 31.719782,117.002327 31.719757,117.001616 31.719403,117.00157 31.719369,117.001539 31.719326,117.000743 31.718054,116.999091 31.713728,116.997146 31.709069,116.996365 31.707367,116.996267 31.707093,116.996238 31.706994,116.99623 31.706893,116.996245 31.706819,116.996273 31.706754,116.996409 31.706573,116.996587 31.706432,116.996721 31.706367,116.996825 31.706307,116.99819 31.70559,116.998262 31.705558,116.998334 31.705538,116.998835 31.705421,117.002995 31.704857,117.003675 31.704787,117.003918 31.704776,117.004027 31.704771,117.004168 31.70474,117.004266 31.704715,117.004386 31.704683,117.00471 31.704614,117.005306 31.704403,117.005651 31.704275,117.00601 31.704102,117.006144 31.703984,117.006234 31.703884,117.009176 31.699262,117.009229 31.699196,117.009285 31.699143,117.010173 31.698444,117.010246 31.698401,117.01036 31.69833,117.010837 31.698044,117.010909 31.698017,117.010963 31.698002,117.011037 31.69801,117.01111 31.698022,117.011168 31.698042,117.011232 31.698098,117.011266 31.698172,117.011725 31.699903,117.01175 31.699974,117.011808 31.700066,117.011866 31.700121,117.01208 31.700319,117.01216 31.70037,117.012251 31.700404,117.015629 31.701222,117.015722 31.701257,117.015814 31.701313,117.015878 31.701375,117.017891 31.704457,117.017933 31.70455,117.017957 31.704636,117.017971 31.705231,117.017986 31.705356,117.018 31.705425,117.018034 31.705508,117.018087 31.70566,117.018147 31.705865,117.018186 31.706047,117.018515 31.708031,117.018515 31.70815,117.01848 31.708297,117.018416 31.708451,117.01833 31.708575,117.011975 31.713523,117.011859 31.713683,117.011779 31.713839,117.011703 31.714047,117.011664 31.714249,117.011677 31.714383,117.011706 31.714495,117.011786 31.714662,117.011997 31.714915,117.012141 31.715065,117.014797 31.716927,117.014912 31.717017,117.015002 31.717123,117.015162 31.71735,117.015251 31.717542,117.015296 31.717711,117.015328 31.717843,117.015869 31.719686,117.015917 31.719878,117.016221 31.721471,117.016263 31.721593,117.01632 31.721715,117.018292 31.724966,117.018778 31.725657,117.019252 31.726246,117.019392 31.726422,117.019552 31.726604,117.0196 31.726684,117.019629 31.726796,117.019607 31.726873,117.019549 31.72694,117.019498 31.726991,117.019389 31.727081,117.019305 31.727201,117.019278 31.727233,117.019256 31.727265,117.019258 31.727308,117.019287 31.727347,117.020762 31.728633,117.020832 31.728681,117.020871 31.728742,117.020871 31.728828,117.020845 31.728895,117.0208 31.728953,117.019948 31.729663,117.019604 31.729971,117.019412 31.730172,117.019272 31.730388,117.019221 31.730438,117.019156 31.730476,117.019092 31.730494,117.019047 31.730505,117.018336 31.730643,117.017588 31.73086,117.017269 31.730937,117.017226 31.730938,117.017183 31.730928,117.01716 31.730912,117.017124 31.730866,117.017107 31.730838
Time taken: 0.046 seconds, Fetched: 4 row(s)
hive> select * from ods_usertag_d limit 10;
OK
1D2916F9ACFBFA27980A2430DDB659E1BC11D556	AA3DB6AB27731E170BF6017B65C16A03	2	20	AA3DB6AB27731E170BF6017B65C16A03	86322	魅族	4300	29	9	117255031870040	8340104	20220530
8DECB8F8225E3F14339EAC9878A4EBF9252734D0	39C1AD8035ABBED8094A665D97D370FF	2	31	39C1AD8035ABBED8094A665D97D370FF	81101	苹果	5999	200	1	117230031835040	8340104	20220530
227DB4F81CF5D056FB904AD293456D86B4346BB3	FFCD181EA9CE19283A977F90A17755A1	2	36	FFCD181EA9CE19283A977F90A17755A1	83604	OPPO	3800	129	4	118750031955040	8320114	20220530
0DE046A7259BD01CCF2CB5A2B196DECD3230E6C9	97DE78E091781EC2E032D56FEA511C79	2	30	97DE78E091781EC2E032D56FEA511C79	84514	OPPO	3800	69	3	116595032685040	8340421	20220530
7FD6C1A7978182441F2FD2618E7AEB2062FF0938	37F5D6971DB3FB6E154370F1D436FE7F	1	25	37F5D6971DB3FB6E154370F1D436FE7F	84508	小米	3780	69	7	117205031740040	8340104	20220530
E2444622230A2EA54922DD47E85B40A13572513B	B559C1494EBB6E8A06F7F3BD4DD127CD	2	30	B559C1494EBB6E8A06F7F3BD4DD127CD	85201	VIVO	3100	129	5	117230031830040	8340104	20220530
A1CB06254B210E0FB0472975BDBB36B8F5592B31	069CF71B6891479DE005B7703B7FFBF9	1	17	069CF71B6891479DE005B7703B7FFBF9	86530	坚果	3200	49	3	117180031845040	8340104	20220530
9BF84352E20B7FEE78F1BA7FF9F71C751868E13A	5424ABB5726CA0FAB16E1D4CCBDF23B1	1	35	5424ABB5726CA0FAB16E1D4CCBDF23B1	86328	魅族	4300	200	8	117440031845040	8340122	20220530
C9C29DBB7CFDA9C1FBF2C0EA390DE4E5EC65D4F3	731CD3299D01C02E57A4579766D9F146	2	42	731CD3299D01C02E57A4579766D9F146	82102	VIVO	3100	39	3	117275031840040	8340111	20220530
8E0D924AFA618C4B2BABAB6FA3D3B3941ACFBFD2	BA9D6130EE0224922054C64BF56C0365	1	37	BA9D6130EE0224922054C64BF56C0365	83416	苹果	5999	29	6	120595030015040	8330602	20220530
Time taken: 0.094 seconds, Fetched: 10 row(s)
[ods@master scripts]$ hdfs dfs -ls /daas/motl/ods/
Found 5 items
drwxr-x---+  - ods ods          0 2022-05-31 21:56 /daas/motl/ods/ods_admincode
drwxr-x---   - ods ods          0 2022-05-31 20:05 /daas/motl/ods/ods_oidd
drwxr-x---+  - ods ods          0 2022-05-31 21:58 /daas/motl/ods/ods_scenic_boundary
drwxr-x---+  - ods ods          0 2022-05-31 21:48 /daas/motl/ods/ods_usertag_d
drwxr-x---+  - ods ods          0 2022-05-31 15:26 /daas/motl/ods/student
[ods@master scripts]$ hdfs dfs -ls /daas/motl/ods/ods_admincode
Found 1 items
-rw-r--r--   3 ods ods     176593 2022-05-31 21:56 /daas/motl/ods/ods_admincode/data__93894336_5e49_4d1a_8e7b_adeb39a18f4b

锐单商城拥有海量元器件数据手册IC替代型号,打造电子元器件IC百科大全!

相关文章