锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

Industrial mmWave Sensors Device Overview(工业mmWave传感器设备概述)

时间:2022-10-12 08:00:01 sitemap reel7传感器电路

Hello, and welcome to the Device Overview for TI’s IWR14 and IWR16 series of single chip CMOS based millimeter wave radar sensors.
您好,欢迎观看TI的IWR14和IWR16系列基于CMOS的单芯片毫米波雷达传感器的器件概述
In this video, we’ll start with a brief introduction of TI’s millimeter wave sensors, look at the signal processing chain as it relates to these devices, and a few system typologies in which these devices can be deployed.
在这个视频中,我们将首先简要介绍它TI毫米波传感器,了解信号处理链与这些设备之间的关系,并介绍几个系统拓扑,可以部署这些设备
We then get into the details of these devices, touching upon the major functional blocks.
然后,我们将详细介绍这些设备,它们将涉及主要功能块
Finally, we’ll go with the boot modes and a quick overview of the software development platform available for developing with TI’s millimeter wave sensors.
最后,我们将了解启动模式并快速概述可用性TI开发mm波传感器软件开发平台
Let’s start with a brief overview of the devices.
让我们简要总结一下这些设备
The IWR 1443 and 1642 belong to TI’s IWR1x family of single chip industrial millimeter wave radar sensors based on FMCW radar technology.
IWR1443和1642属于TI的IWR1x基于该系列单芯片工业毫米波雷达传感器FMCW雷达技术
These devices are capable of operating in the 76 to 81 gigahertz band, with up to 4 gigahertz continuous chirp bandwidth.
这两种器件能够在76至81GHz频段内运行,具有高达4GHz连续线性调频脉冲带宽
These devices are built with TI’s low power 45 nanometer out of CMOS technology and enable unprecedented levels of integration in an extremely small form factor.
他们均采用TI低功耗45纳米CMOS技术小的包装中,可以实现前所未有的集成
These millimeter wave radar sensors provide an ideal solution for low-power, self-monitored, ultra-accurate radar systems in industrial applications, such as building automation, factory automation, drones, material handling, traffic monitoring, and surveillance.
这些毫米波雷达传感器为建筑自动化、工厂自动化、无人机、材料处理、交通监控、超精确雷达系统提供了理想的解决方案
Both these devices provide for single chip radar solutions by integrating analog and digital components, including multiple transmit and receive chains, PLLs, A to D converters, ARM Cortex R4F, MCUs, a C67x DSP or an FFT accelerator, memories, and various input-output interfaces.
单芯片雷达解决方案可以通过集成模拟和数字组件来实现,包括多个发射和接收链,PLL、模数转换器,ARM Cortex R4F、MCU、C67x DSP或FFT加速器、存储器和各种输入输出接口
These devices also feature continuous self-monitoring and calibration of the RF and analog functionality to a separate ARM R4F based radio processor subsystem which is responsible for front end configuration, control, and calibration.
基于射频的连续自监控、校准特性和模拟功能,这些设备还集成到单独的基础上ARM R4F在无线电处理子系统中,负责前端的配置、控制和校准
This section shows the key features of these devices.
本部分主要介绍了这些设备的主要特性
These sensors are based on FMCW radar technology with capability to operate in the 76 to 81 gigahertz frequency range, and support chirp bandwidths of up to 4 gigahertz.
基于这些传感器FMCW雷达技术1雷达技术GHz在频率范围内运行,支持高达4GHz线性调频脉冲带宽
Up to three transmit and four receive chains are provided for MIMO radar operation.
为MIMO雷达的运行提供了三个发射链和四个接收链
TI’s millimeter wave sensors support highly programmable and flexible chirp profiles to support multiple sensing profiles in the same radar frame.
TI毫米波传感器支持高度可编程、灵活的线性调频脉冲曲线,支持同一雷达帧中的多个感应曲线
The 1443 has an onboard hardware accelerator for FFT operations and Continuous False Alarm Rate, or CFAR, based detection algorithms.
1443具有用于FFT基于连续虚警率或CFAR的检测算法
While the 1642 provides a full featured C76X high performance DSP core for FMCW signal processing, and advanced algorithms such as clustering, tracking, and object classification.
而1642为FMCW信号处理提供全面的功能C76x高性能DSP高级算法,如集、跟踪和物体分类
There are two ARM Cortex R4F MCUs running at 200 megahertz.
有两个ARM Cortex R4F MCU以200MHz的频率运行
One of these is locked and used by the calibration and monitoring engine, that is the radio subsystem.
其中一个已定,用于校准和监控引擎,即使用无线电子系统
This R4F is programmed through firmware ware provided by TI and is not available for user code.
该R4F通过TI编程提供的固件不适用于用户代码
However, the second cortex R4F is available for high level application processing.
但是第二个Cortex R4F可用于高级应用处理
The devices support various industry standard input-output interfaces, such as Scan, SPI, I2C, UART, and support high-speed raw ADC data output using CSI2 and LVDS.
这些设备支持扫描、SPI、I2C、UART,并支持使用CSI2和LVDS高速原始ADC数据输出
This slide shows the components of a typical FMCW radio chain, and maps them to the signal processing capabilities of the 14 and 16xx devices.
本幻灯片显示典型FMCW无线电链的组件映射到14和16xx设备的信号处理功能
The receiver chain starts with the RF front end receiving the reflected radar signal, which is mixed with the transmitter signal to generatea beat frequency signal which is delivered to the ADC.
接收链始于接收反射雷达信号的射频前端,该反射雷达信号与发射器信号混合,生成拍频信号并传输到ADC
The ADC converts the analog signal to digital samples which are preprocessed for digital processing.
ADC将模拟信号转换为数字样本,并对样本进行预处理以便进行数字处理
Successive FFTs are computed on the digitized samples for range, velocity, and angle of arrival calculation.
对数字样本进行连续FFT运算以进行距离、速度和到达角计算
The radar hardware accelerator onboard the 14xx device can be used to offload the FFTs and detection processing to get a point cloud output.
可以使用14xx器件上的板载雷达硬件加速器来卸载FFT和检测处理,从而获得点云输出
The 16xx device can be used to run advanced clustering, tracking, and object classification algorithms using the onboard C674X DSP.
可以使用16xx器件,利用板载的C674X DSP来运行高级群集、跟踪和物体分类算法
Here we show some example applications and corresponding system topologies for the millimeter wave sensors.
这里显示了毫米波传感器的一些示例应用和相对应的系统拓扑
First is tank level sensing.
首先是液箱液位感应
Typical industrial fluid level sensors operate on a two-wire 4 to 20 milliampere current loop where the sensor wakes up a few times a second to take level measurements and goes back to sleep to achieve the necessary power efficiency.
典型的工业液位传感器在4至20毫安的双线电流回路上运行,其中传感器每秒唤醒数次以进行液位测量,然后返回到睡眠模式以实现必要的电源效率
The 14xx device can be paired with an MCU for such an application, with the MCU being the master.
对于此类应用,14xx器件可与MCU配对,使MCU成为主器件
The MCU wakes up periodically and powers up the radar sensor.
MCU定期唤醒并为雷达传感器加电
Once the measurement is completed, the MCU shuts down the radar device and goes back to sleep.
测量完成后,MCU关闭雷达器并返回到睡眠模式
The second application shows a 14 or 16xx device connected to an external application processor or FPGA over SPI for a drone or industrial robot application.
第二个应用显示了一个14或16xx器件通过适用于无人机或工业机器人应用的SPI连接到了一个外部应用处理器或FPGA
Here the radar sends a sense point cloud information to the external processor for further processing and decision making.
此处,雷达将感应点云信息发送到外部处理器进一部处理和决策
For example, the flight controller of a drone can use the point cloud information provided by the radar sensor to avoid obstacles or make intelligent landing decisions.
例如,无人机飞行控制器可以使用雷达传感器提供的点云信息来避开障碍物或做出智能着陆决策
Another possible application could involve multiple IWR14 or 16 devices connected to a centralized application process or an FPGA.
另一种可能的应用可能需要多个UWR14或16器件连接到一个中央应用进程或FPGA
Such an topology could be used for surround sensing in drones or autonomous forklifts and other similar applications.
此类拓扑可用于在无人机或自驾式叉车以及其他类似应用中进行环境感测
The last example shows a single 14 or 16xx device which is paired up with an imaging processor such as TI’s DM812X for radar and camera fusion.
最后一个示例显示了单个14或16xx器件,该器件与一个成像处理器配对,例如TI的适用于雷达和摄像机融合的DM812X
Such a deployment can be used for intelligent traffic monitoring where the radar can be used for long range sensing, or to turn the camera on when the object is detected thus saving camera power, disk storage, and data transmission bandwidth.
这种部署可用于只能交通监控,其中的雷达可用于远距离感测,或者在检测到物体时打开摄像机,从而节省摄像机电量、磁盘存储空间和数据传输带宽
Moving on to the next section, we’ll look at the millimeter wave sensor devices in more detail to understand the various functional blocks.
再来看看下一部分,我们将更详细地介绍毫米波雷达传感器器件以便了解各个功能块
This picture shows a superimposed block diagram of the IWR1x millimeter wave radar family.
这张图片显示了IWR1x毫米波雷达系列地叠加方框图
The components outlined green are present only on the 14xx device while the components in blue are present only on the 16xx device.
以绿色标识地组件仅存在与14xx器件上,而以蓝色标识地组件仅存在于16xx器件上
For example, the 1443 device has three transmit chains, whereas the 1642 device has only two of them.
例如,1443器件有三个发射链,而1642器件只有其中地两个
Therefore, the third TX chain is highlighted in green which indicates that it is available only on the 1443.
因此,第三个TX链以绿色突出显示,表示它仅在1443上可用
The 14xx device consists of three main subsystems, which are the RF or analog subsystem, the radar subsystem, and the master subsystem.
14xx器件由三个主要的子系统构成,分别是射频或模拟子系统、雷达子系统和主子系统
In addition to these three subsystems, the 16xx device also includes the DSP subsystem, which is outlined blue in this picture.
除了这三个子系统外,16xx器件还包括DSP子系统,在这张图片中以蓝色标出
Let us look at the RF and analog subsystem in more detail.
让我们更细致地看一下射频和模拟子系统
This subsystem includes the RF and analog circuitry.
这个子系统包括射频和模拟电路
That is, the synthesizer, the PA, LNA, mixer, IF, and ADC.
即合成器、PA、LNA、混频器 、IF和ADC
This subsystem also includes the crystal oscillator and temperature sensors.
这个子系统还包括晶体振荡器和温度传感器
The RF and analog subsystem can be divided into three subcomponents, namely the clock subsystem, the transmit subsystem, and the receive subsystem.
射频和模拟子系统可以分为三个子组件,即时钟子系统、发射子系统和接收子系统
We’ll take a look at the subcomponents in more detail, starting with the clock subsystem.
我们将更详细地介绍各个子组件,首先从时钟子系统开始
The clock subsystem generates 76 to 81 gigahertz frequency from an input preference of 40 megahertz crystal.
时钟子系统从40MHz晶体地输入基准生成76至81GHz的频率
It has an inbuilt oscillator circuit followed by a clean-up PLL, and an RF synthesizer circuit.
它有一个内置的振荡器电路,其后面是一个清理PLL和一个射频合成器电路
The output of the RF synthesizer is then processed by a 4X multiplier to create the required frequency in the 76 to 81 gigahertz spectrum.
之后,4X乘法器将会处理射频合成器的输出以便在76至81GHz频谱内产生所需的频率
The RF synthesizer output is modulated by the timing engine block in order to create the required waveforms for the effective sensor operation.
射频合成器输出由时序引擎块进行调制以便产生所需的波形,确保传感器有效运行
The timing engine is highly flexible and is programmed via the R4F based radio controller subsystem.
时序引擎极其灵活,可通过基于R4F的无线电控制子系统进行编程
The output of the RF synthesizer is available at the device pin boundary for multichip cascaded configuration.
可以在器件引脚边界处使用射频合成器的输出以实现多芯片的级联配置
The clean-up PLL also provides a reference clock for the host processor after system wake up.
系统唤醒后,清理PLL也会为主机处理器提供参考时钟
The clock subsystem also has built in mechanisms for detecting the presence of a crystal and monitoring the quality of the generator clock.
时钟子系统也具有用于检测是否存在晶体并监控发生器时钟质量的内置机制
Moving on to the next component of the RF and analog subsystem, which is the transmit subsystem.
接下来我们讨论一下射频和模拟子系统的组件,即发射子系统
Depending upon the device, the transmit subsystem consists of two or three parallel transmit chains.
根据器件不同,发射子系统包含两个或三个并行发射链
IWR1443 has three TX chains, while the 1642 has two TX chains.
IWR1443由三个TX链,而1642有两个TX链
Each transmit chain has independent phase and amplitude control.
每个发射链有独立的相位和振幅控制
A maximum of two transmit chains can be operational at the same time.
最多可以同时运行两个发射链
However, all three chains can be operated together in a time multiplexed fashion.
但所有三个链可以通过时间多路复用方式一起运行
The device also supports binary phase modulation for MIMO radar and interference mitigation.
该器件还支持MIMO雷达的二进制相位调制和干扰抑制
Finally, we look at the receive subsystem.
最后,我们看一下接收子系统
The receive subsystem consists of four parallel channels, that each receive channel consists of an LNA, a mixer, IF filtering, A to D conversion and decimation.
接收子系统包含四个并行通道,每个接收通道均包含LNA、混频器、IF滤波、模数转换和抽取
All four receive channels can be operational at the same time.
所有四个接收通道可以同时运行
Individual powered on option is also available for system optimization.
还提供单独的通电选项以实现系统优化
Unlike conventional [? reel only ?] receivers, TI’s radar sensors support a complex baseband architecture which uses quadrature mixer and dual IF and ADC chains to provide complex I and Q output for each receiver channel.
与传统的[?仅卷带?]接收器不同,TI的雷达传感器支持复基带架构,这种架构使用正交混频器以及双通道IF和ADC链为每个接收通道提供复数I和Q输出
The bandpass IF chain has configurable lower cut off frequencies about 350 kilohertz.
带通IF链具有可配置的较低截止频率,约为350KHz
And the continuous time sigma delta ADC supports bandwidths of up to 15 megahertz.
连续时间 sigma delta ADC 支持高达15MHz的带宽
We now look at the next functional block, which is the radar subsystem.
现在让我们看一看下一个功能块,即雷达子系统
The radar system is also known as the BSS or Built-in Self-test Subsystem.
雷达子系统也称为BBS或内置自检子系统
It includes the digital front end, the ramp generator, and an internal processor for control and configuration of the low level RF analog and ramp generator registers.
它包括数字前端、斜坡发射器和用于控制和配置低级射频模拟和斜坡发生器寄存器的内部处理器
The radar processor is actually a second, dedicated ARM Cortex R4F microcontroller running at 200 megahertz.
雷达处理器实际上是以200MHz的频率运行的第二个专用RAM Cortex R4F微控制器
Note that this processor is programmed by TI and takes care of RF calibrations, self-test, and monitoring functions.
请注意,此处理器由TI进行编程,他负责管理射频校准、自检和监控功能
This processor is not available for customer application.
此处理器不适用于客户应用
User applications running on the master subsystem do not have direct access to the radar system.
在主子系统上运行的用户应用不能直接访问雷达系统
The master system accesses the radar system through well-defined API messages which are sent over hardware mailboxes.
主系统通过明确定义的API消息来访问雷达系统,这些消息是通过邮箱发送的
This interface is also known as the millimeter wave link and TI’s mmWave SDK includes a millimeter wave length API.
这个接口也被称为毫米波链路,TI的毫米波SDK包括一个毫米波长的API
The next functional block is the master subsystem.
下一个功能块是主子系统
The master subsystem includes an ARM Cortex R4F processor clocked at 200 megahertz for running user application code.
主子系统包含一个200MHz的频率计时的ARM Cortex R4F处理器,用于运行用户应用的代码
User applications executing on disk processor control the overall operation of the device, including radar control via well defined API messages, radar signal processing which is assisted by the radar hardware accelerator or DSP, and peripherals for external interface.
在磁盘处理器上执行的用户应用程序控制器件的总体运行,包括通过明确定义的API消息进行雷达控制、在雷达硬件加速器或DSP以及用于外部接口的外设的协助下进行雷达信号的处理
This subsystem also includes the various external interfaces available on the 14 or 16xx devices.
这个子系统还包括14或16xx器件上可用的各种外部接口
A Quad Serial Peripheral Interface, or QSPI, is available which can be used to download customer code directly from a serial flash.
提供了一个四路串行外设接口或QSPI,可用于直接从串行闪存下载客户代码
A CAN interface is included that can be used to communicate directly from the device to a canvas.
包括一个CAN接口,可用于直接从器件与画布通信
Depending upon the device, CSI2 and LVDS interfaces are included to facilitate high speed raw ADC data transfer to an external processor or an FPGA.
根据器件不同,包括CSI2和LVDS接口以帮助将高速原始ADC数据传输到外部处理器或FPGA
The 14xx device includes both CSI2 and LVDS while the 16xx includes only LVDS.
14xx器件包括CSI2和LVDS,,而16xx只包括LVDS
Note however, that CSI2 and LVDS on the 14xx are multiplexed, so only one of them can be used at any instant.
但请注意,14xx上的CSI2和LVDS采用多路复用形式,因此,在任何时候只能使用它们中的一个
An SPI/I2C interface is available for Power Management IC, or PMIC control.
提供一个SPI/I2C接口,用于进行电源管理IC或PMIC控制
For more complex applications, the device can operate under the control of an external MCU which can communicate with the 14 or 16xx device over SPI interface.
对于更复杂的应用,器件可以在外部MCU的控制下运行,该MCU可以通过SPI接口与14或16xx器件通信
The next functional block is the DSP subsystem.
下一个功能块是DSP子系统
The DSP subsystem, which is available only on 16xx devices, contains TI’s high performance C674X DSP for FMCW signal processing, including FFT and detection, and also advanced radar signal processing.
DSP子系统仅存在于16xx器件上,它包含TI的高性能C674X DSP,用于进行FMCW信号处理,包括FFT和检测,还可用于高级雷达信号处理
This allows the 16xx to serve as a complete single chip radar with advanced capabilities for clustering, tracking, and object classification.
这可以使16xx用作完整的单芯片雷达,并具有适用于群集、跟踪和物体分类的高级功能
Next we look at the radar hardware accelerator which is the last functional block in this device overview.
下面看一下雷达硬件加速器,这是本器件概述中的最后一个功能块
The radar hardware accelerator is available only on 14xx devices and it enables offloading certain frequently used computations in FMCW radar signal processing from the main processor.
雷达硬件加速器仅存在于14xx器件上,它可以从主处理器卸载FMCW雷达信号处理中的某些常用运算
FMCW radar signal processing involves the use of FFT and log magnitude computations in order to obtain a radar image across range, velocity, and angle dimensions.
FMCW雷达信号处理涉及使用FFT和对数幅度计算,从而在距离、速度和角度维度之间获得雷达图像
Some of the frequently used functions in FMCW radar signal processing can be done within the radar hardware accelerator, while still retaining the flexibility of implementing other proprietary algorithms in the master system processor.
FMCW雷达信号处理中的一些常用功能可以在雷达硬件加速器内执行,同时仍能保持在主系统处理器中实现其他专有算法的灵活性
As shown in this diagram, the accelerator contains two functional parts.
如此图中所示,加速器包含两个部分
The first functional part is used for FFT and related pre-processing and log magnitude operations.
第一个功能部分用于FFT和相关预处理及对数幅度运算
The second functional part provides for CFAR or constant false alarm rate based detection algorithms.
第二个功能部分提供基于CFAR或恒虚警率的检测算法
Data movement to and from the radar hardware accelerator is based or TI’s EDMA or Enhanced Direct Memory Access controller.
进出雷达硬件加速器的数据移动基于TI的EDMA或增强型直接存储控制器
Please refer to the radar hardware accelerator to use a guide or radar hardware accelerator online training for more details.
请参阅雷达硬件加速器用户指南或雷达硬件加速器在线培训以了解更多详细信息
Having covered the various functional blocks, we now take a brief look at the boot modes available on TI’s radar devices.
介绍完了各个功能块后,我们现在简要看一下TI的雷达器件上可用的启动模式
TI’s millimeter wave radar devices support two boot modes, namely flashing mode and functional mode.
TI的毫米波雷达器件支持两种启动模式,即闪存模式和功能模式
The desired boot mode is selected by configuring the Sense On Power, or SOP, pins as described in the device data sheet.
通过按照器件数据表中所述的方式配置加电感测或SOP引脚,可以选择所需的启动模式
Let’s talk about the flashing mode first.
我们先谈一谈闪存模式
This boot mode is used to burn or store the program binary image into the QSPI serial flash.
这种启动模式用于将程序二进制映像刻录或存储到QSPI串行闪存中
When this boot mode is enabled, the bootloader enables the UR driver and expects a data stream consisting of the application binary image.
启用这种启动模式后,引导加载程序将启用UR驱动程序并会获得由应用二进制映像构成的数据流
On receiving a valid application binary image, the bootloader stores the binary into appropriate sections of the serial flash.
在接收到有效的应用二进制映像时,引导加载程序将会将该二进制文件存储到闪存的相应部分
This boot mode could be used during software development to update the application binary on the flash.
可以在软件开发过程中使用这种启动模式来更新闪存上的应用二进制文件
The second mode, which is the functional or deployment mode, is used to boot the device from the QSPI flash using a previously stored application binary.
第二种模式是功能或部署模式,用于使用先前存储的应用二进制文件从QSPI闪存启动器件
With this boot mode selected, the bootloader looks for a valid application image in the QSPI flash.
选择这种启动模式后,引导加载程序将会在QSPI闪存中查找有效的应用程序映像
On finding a valid image, the bootloader copies the image to the master subsystem’s memory to start the boot process.
在找到有效的影响后,引导加载程序会将该映像复制到主子系统的存储器件中以开始启动过程
In this way, the device moves up autonomously from the serial flash.
通过这种方式,器件将从串行闪存中自主上移
In the last part of this presentation, we take a quick look at the software platform available for programming TI’s millimeter wave radar devices.
在本次演示的最后一部分,我们快速了解一下可用于对TI的毫米波雷达器件进行编程的软件平台
TI’s millimeter wave radar sensors are complemented by a rich software offering, which consists of an SDK, TI designs, examples, and tools.
TI的毫米波雷达传感器具有丰富的软件产品作为辅助,其中包括SDK、TI设计、示例和工具
The software platform is divided into three main components, as shown.
软件平台为三个主要组成部分,如图所示
The first one is the mmWave SDK, which provides various foundational software components such as TI’s sys BIOS RTOS and drivers corresponding to the hardware peripherals available on the radar devices.
第一部分是毫米波SDK,他提供各种基础软件组件,例如TI的系统BIOSRTOS和与雷达器件上提供的硬件外设相对应的驱动程序
It also includes the mmWave link and mmWave API to enable programming the radar sensor using high-level API.
他也包括毫米波链路和毫米波API,以支持使用高级API对雷达传感器进行编程
It also includes signal processing libraries for both the C67X DSP and the radar hardware accelerator.
它还包括适用于C67X DSP和雷达硬件加速器的信号处理库
Besides the mmWave SDK, the software offering also includes an out of box demo, various TI designs and labs.
除了毫米波SDK外,软件产品还包括开包即用演示、各种TI设计和实验
The out of box demo enables the user to quickly evaluate the radar AVM and visualize the range, velocity, and angle of the target object.
通过开包即用演示,用户可以快速评估雷达AVM并可视化目标物体的距离、速度和角度
The TI designs demonstrate the applicability of TI’s mmWave radar in specific applications, such as level sensing and traffic monitoring.
TI设计演示TI毫米波雷达在特定应用中的适用性,例如液位感应和交通监控工具
Last but not least, we have the mmWave studio which provides a system estimator tool and raw ADC data capture capabilities.
最后,但同样重要的是,我们有mmWaveStudio,它提供了系统估算器工具和原始ADC数据捕获功能
We look at the system estimator tool in the next slide.
我们将在下一张幻灯片中介绍系统估算器工具
Defining chirp configurations is fundamental to the operation of FMCW radars.
定义线性调频脉冲配置对FMCW雷达的正常运行非常重要
And the goal behind the system estimator tool is to simplify the complex task of defining chirp parameters for TI’s millimeter wave radar sensors for the desired sensing configuration.
系统估算器工具的目的是简化为TI的毫米波雷达传感器定义线性调频脉冲以实现所需感应配置这项复杂任务
This tool allows the user to provide application level inputs, such as the desired maximum range, velocity, range resolution, velocity resolution, et cetera, and outputs the chirp configuration which can be used with the mmWave API to program the sensor accordingly.
使用这个工具,用户可以提供应用级输入,例如所需的最大距离、速度、距离分辨率、速度分辨率等,并且输出线性调频脉冲配置,此配置可与毫米波API配合使用,以便相应地对传感器进行编程
It also estimates the radar data cube memory requirements corresponding to the chirp configuration and flags out of bound parameters as well.
它还估算与线性调频脉冲配置相对应的雷达数据队列要求,并还标记越界参数
This picture shows an architectural diagram of TI’s mmWave SDK.
这张图片显示了TI毫米波SDK的架构图
The components in blue are provided by the SDK, while the components in red indicate application code.
用蓝色标示的组件由SDK提供,而用红色标示的组件表示应用代码
As we can see, the SDK has a modular design and is divided into various layers.
我们可以看到,SDK采用模块化设计,并且分为不同的层
Each layer provides a well defined API to the layer above it, thus obstructing complexity.
每个层为其上面的层提供明确定义的API,因而降低了复杂性
For instance, mmWave front end firmware, which runs on the radar subsystem, completely encapsulates the configuration, control, calibration, and monitoring of the RF and analog functionality.
例如,毫米波前端固件,它在雷达子系统上运行,完全包含射频和模拟功能的配置、控制、校准和监控
It exports the mmWave link API.
它导出毫米波链路的API
Using which, the master subsystem communicates with it to control and monitor the sensor front end.
使用此API,主子系统可与其通信,从而控制和监视传感器前端
The mmWave SDK not only implements the application side of the mmWave link, but it also provides another level of abstraction to the mmWave API.
毫米波SDK不仅实现mmWave link的应用侧,而且还提供毫米波API的另一个级别的抽象
The mmWave API provides high level functions to program and control the radar front end.
毫米波API提供高级功能,用于对雷达前端进行编程和控制
The mmWave API internally uses the mmWave link API.
毫米波API在内部使用毫米波链路API
This picture shows the directory organization of the mmWave SDK.
这张图片显示了毫米波SDK的目录结构
This concludes the overview of TI’s industrial millimeter wave radar sensors.
TI工业毫米波雷达传感器概述到此结束
To learn more about these devices, please refer to these resources.
要了解有关这些器件的更多信息,请参阅这些资源
Thank you.
谢谢

相关文章