锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

【物联网】一种新的工业数据通讯解决方案OPC UA TSN

时间:2023-09-04 01:37:01 接近传感器lj8a3


Dietmar Bruckner1,Rick Blair2,Marius-petruStanica3,A. Astrit Ademaj4,Wesley Skeffington5,Dirk Kutscher6,Sebastian Schriegel7,R. Wilmes8,Karl Wachswender9,Ludwig Leurs10,M. Seewald11,Rene Hummen12,E-C. Liu13,S. Ravikumar14

(1.贝加莱工业自动化2.施耐德电气;3.. ABB;4. TTTech;5.通用电气;6..华为;7.Fraunhofer IOSB-INA;8.菲尼克斯电气;9.英特尔;10.博世力士乐;11.思科;12.赫斯曼;13.摩莎;14.Kalycito Infotech)

摘要

在工业自动化系统集成中,不同厂商一般都有自己的数据通讯标准和协议。目前工业数据通讯领域由基于以太网的各类现场总线系统主导,虽然它们有着相似的要求和细分市场,但是它们的实施和生态系统差别却很大。价值链中的利益相关者通常在其特定技术的决策方面并不完全一致,因此,终端客户和设备制造商不得不购买和掌握诸多产品和技术,这就大大提高了使用成本。

时间敏感网络TSN 与OPCUA 的结合,能实现从现场层、控制层、管理层直到云端的数据通讯。

OPC UA TSN作为独立于某一特定厂商的后继技术,将IT和OT无缝融合到现场总线项目中,可以获得良好的适用性并实现更高水平的自动化配置。我们发现,通过选择正确的一系列功能特性,它能够满足今天和未来的工业通讯要求,同时在中期利用标准以太网硬件的成本优势。由AVB演变而来的TSN网络基础结构同时能够承载各类工业通信,从硬实时到尽力服务,同时保持每种方法的独特属性。OPC UA是针对嵌入式应用的OPC通讯标准的重大发展。被描述为发布/订阅的最新进展则更进一步,旨在为嵌入式设备在较小空间内优化性能。它增加了用于描述数据的源模型,以及用于交换和浏览信息的通讯基础结构。此外,OPC UA还带有一个内置的安全模型,可以根据即将出台的标准如IEC 62443来帮助实施安全系统。我们预计,OPC UA TSN将很快将自身作为工业自动化领域内的游戏规则变革者,成为从传感器到云端建立全面的通讯基础结构的首要也是唯一的候选对象。

关键词

工业数据通讯; OPC UA TSN;IT和OT无缝融合;循环周期;数据链路层    

中图分类号:    文献标识码:B

引言

在工业自动化系统集成中,客户的系统编程和组态软件工具,当然也包括数据通讯协议,通常由组成该系统的PLC或DCS供应商提供,不同厂商一般都有自己的数据通讯标准和协议。目前工业数据通讯领域由基于以太网的各类现场总线系统主导,虽然它们有相似的要求和细分市场,但是它们的实施和生态系统差别却很大。它们中的大多数都拥有相应的联盟组织,由一家大的市场参与厂商引导和资助,并推动技术的发展。价值链中的利益相关者通常在其特定技术的决策方面并不完全一致,因此,终端客户和设备制造商面临着众多产品和技术需要生产、运行、诊断、维护和储备。虽然对产品和服务的可用性基本满意,但是应对多个解决方案会产生高昂的成本,并限制了IoT能力。时间敏感网络TSN 从实质上说是一种能使以太网具有实时性和确定性的新标准。比如Profinet不适合连接云端和移动设备,OPC UA 不适合用于现场级通讯控制,但TSN 能把诸如Profinet等实时以太网现场总线和OPC UA共享到同一个通讯设施上,识别底层IO,实现从现场层、控制层、管理层直到云端的数据通讯。OPC UA TSN作为独立于某一特定厂商的后继技术,将IT和OT无缝融合到现场总线项目中,可以实现比以往更高水平的自动化配置。此外,由于OPC UA和TSN并非紧密地与某一特定厂商绑定,从而可大大减少出于非技术原因的人为干预,其适用性也要比过去不同的现场总线宽广得多。

NO:1
工业数据通讯

1.1 工业自动化系统数据通讯的金字塔结构

今天的工业数据通讯主要是按照自动化系统金字塔来组织的,可参见图1(a)到(c)。在塔顶的计算机层,使用标准的IT协议(互联网协议1)。对于机器间和过程通讯(分布式控制器层)而言,相较传统的基于以太网的M2M现场总线系统(PROFINET3、EtherNet/IP4、CC-Link IE5),OPC UA(IEC 625412)所发挥作用的重要性正在迅速提高。在机器内部(设备和传感器层),具有硬实时能力(也被称为实时以太网)的协议占据主导地位6。根据市场份额,最重要的协议是EtherCAT7、PROFINET IRT8、POWERLINK9和SercosIII10。虽然这些技术有着共同的要求,但是它们的实施差别很大。因此,比较它们是一件复杂的事情,并且很大程度上取决于预期的应用(过程控制、运动、I/O、集中式和分布式控制等)。努力比较各种实时以太网协议在多个类别中的性能已经由Ethernet POWERLINK标准化组织(EPSG)11承担。

相关注释与参考链接:

1.https://en.wikipedia.org/wiki/internet_protocol_suite

2.https://opcfoundation.org/about/opc-technologies/opc-ua/

3.http://www.profibus.com/technology/profinet/

4.https://www.odva.org/Technology-Standards/EtherNet-IP/Overview

5.https://www.cc-link.org/en/cclink/cclinkie/index.html

6.全球范围内,工业以太网和传统现场总线系统目前声称可比的工业通讯市场份额。新的开发主要使用基于以太网的系统,从而导致更高的增长率。具有传统现场总线接口的设备越来越多地被替换,并仅用于传统产品和工厂。

7.https://www.ethercat.org/en/technology.html

8.http://www.innovasic.com/news/industrial-ethernet/

profinet-rt-vs-profinet-irt/

9.http://www.ethernet-powerlink.org/en/powerlink/technology/

10.http://www.sercos.org/

11.http://www.ethernet-powerlink.org/en/downloads/industrial-ethernet-facts/

(a)自动化金字塔各层

(b)现今自动化金字塔中独特的生态系统

(c)使用OPC UA(和TSN)实现从传感器到云端的全面通讯

图1  自动化金字塔–不同层面的通讯需求

1.2 主流通讯协议的循环周期比较

多年来,一直倾向于根据它们各自的功能集比较工业以太网技术。

1.2.1最小循环周期比较@100Mbit

图2  最小循环周期比较@100Mbit

1.2.2  最小循环周期比较@1Gbit

图3  最小循环周期比较@1Gbit

1.2.3  OPC UATSN @1GBit的最小循环周期与现有技术比较

图4   最小循环周期与现有技术比较OPC UATSN @1Gbit

从1.2.1到1.2.3可知,图2a和图2b @100Mbit,图3a和3b @1Gbit,图4则显示了OPC UATSN @1GBit与现今的100Mbit技术的比较,直至设备最多100个,有效载荷最大100 byte。以下参数已被使用:

l  总线型拓扑,输出数据 = 40%的输入数据,交叉通信用于20%的设备

l  转发延迟@100Mbit:TSN: 3µs,开关:10 µs,PLK:0.76 µs,EC:1.35 µs,SER:0.63 µs

l  转发延迟@1Gbit:TSN:780 ns,开关:2 µs,PLK:0.76 µs,EC,0.85 µs,SER:0.63 µs

l  25%的设备是由20个插片式模块化I/O组成(仅影响EtherCAT)

品红色和水绿色平面的实现使用了OPC UA Pub/Sub,它在原始以太网上采用了帧聚合技术。然而,使用Pub/Sub over UDP/IP可能会显示不可区分的平面,而使用单帧可能会增加有效载荷的循环周期超过约50 bytes。

图4显示,具有千兆位物理层的OPC UA TSN的有利实施优于现有解决方案(基于100M bit)大约18倍。

有关注释:

*) Profinet IRT的循环周期始终是31.25 µs的倍数

y )循环周期平面上的隆起代表使用新的以太网帧

表1  计算循环周期的符号

然而,更重要的是,特别是在运动控制应用中技术的性能,它根据为特定应用实现的最小循环周期[1]进行测量。它可以被看作是最具挑战性的度量,如果一项技术满足这项要求,它也可以在对实时性要求较小的环境中得以利用。可实现的最小循环周期是PLC发送全部输出至其从站12并接收到所有输入所需的时间。重要的是,所有从站都要在相同的循环13内接收到来自于PLC的输出。[2]介绍了一个基本的方法,用于估算几种技术的最小循环周期。它们的贡献包括显示相应的最小循环周期的二维图作为设备数量的函数。以下将提供基本机制的综述。EtherCAT(简称:EC)和Profinet IRT(PN)在所分析的技术之中,将要作为采用帧聚合和基于交换式以太网的技术的例子。

循环周期的第一个组成部分是链路传输延迟(符号,见表1)。这是指通过一条具有特定链路容量的线路发送所有帧所需的时间。集总帧的基本方程是:

这里介绍的所有方程都假设了简单的情况,其中输入和输出数据量相等,拓扑结构为完美的总线型。然而在实际应用中,这种比较取决于许多其它参数:

l  输入数据与输出数据的比率

l  具有直接交叉通信的设备的百分比

l  利用不同的循环周期

l  拓扑结构(总线型、星型、环型),以及设备之间的跳数

l  带有自己背板总线的模块化I/O的可用性

假设更具现实价值的结果如图2a –图2b(使用100 Mbit)所示。使用不同的链路容量(1 Gbit)明显改变了这种情况,因为只有循环周期的传输延迟成分–而非网络基础结构成分–可以减少10倍(见图3a - 3b)。因此,对基础结构具有较大依赖性的技术(EtherCAT、Sercos III、POWERLINK)在使用千兆位时的性能平均提高了4 – 6倍。相比之下,基于交换式以太网的技术(EtherNet/IP、ProfinetIRT)可将足够大的有效载荷提高7 – 10倍。对于较小的有效载荷,短帧的传输延迟可能比基础结构的延迟小,导致总线中最小循环周期的下限较低。今天针对Gbit的COTS直通式交换机具有2 µs范围内的转发延迟(图3b),这意味着最小帧大小为250 bytes (=2000 bits)(忽略电缆上的传播迟)。发送较小的帧不会进一步减小循环周期。因此,在具有较高性能要求的应用中,转发延迟短的设备至关重要。OPC UA TSN循环周期的计算是上面介绍的两种方法的组合。具有Pub/Sub值的帧传输延迟–由于帧聚合和高效的帧格式–变为14:

可以注意到,相比今天建立在各种参数组合上的解决方案,可实现的循环周期更低,大约低了18倍(参见图4)。若现今的现场总线技术机制不变,相比具有千兆位电路的假想设备则低了近2倍(参见图3a – 3b)。

1.3 工业数据通信类型

开发新的OPC UA TSN系统的公司拥有多种TSN标准,从中可以为他们的应用选择正确的功能特性。这通常涉及到尝试尽可能接近地匹配传统技术的行为。外推到整个工业自动化市场,这告诉我们,为了得到广泛采用,一个解决方案必须同时支持所有当前使用的工业通信类型。

今天的技术实现了各种通信类型。它们大多数都考虑到了区分周期性和非周期性通信,而在它们实际属性的细微差别方面又有所不同–从每个循环拥有不同发送、传播和接收周期的硬实时通信;到有或无时间同步的周期性通信;到多种来源的非周期性通信,其中TCP/IP就是一个越来越重要的例子。在有些情况下,网络控制、诊断信息和用户控制消息有不同的优先级。我们已经评估了这些,并得到了一个超集。通过工业通信系统实现通讯的通信类型可以概括在下面的表II中。一个融合的网络需要支持所有这些类型(例如,见图10),即使不在特定应用中使用。用于实施的形成机制的选择需具备全球化标准;这里介绍目前讨论的一个提案。

注意:TSN的主要特点是不同通信类型共存的可能性,同时保留实时通信的定时特性。一些现有的“实时”(EtherNet/IP、Profinet)网络使用通信规划和QoS来保证在设备运行良好条件下的行为。由于将TSN用作数据链路层,因此这些技术可以更好地利用带宽效率,因为TSN无条件保护了高优先级的通信(请参阅[3]中ODVA的性能考虑,表1)。

NO:2
设置

计算理论性能估计和定义通信类别要求是一回事–具有硬件和/或软件限制的现实世界实现是完全不同的事情。百兆工业以太网技术已经达到了非常高的成熟度,这意味着几乎所有的现有设备都能够提供全面的网络性能。对于千兆技术而言,事实并非如此。如上所述,千兆将交换网络的性能提高了约10倍。帧聚合、优化标头和超低直通延迟可以进一步提高约2倍。为了在真正的产品中利用该性能,其许多组件都需要进行优化。

许多原型设备已经实施并由作者测试,例如在IIC试验台上。其中两个原型已被用于本文中评估:一个是基于运行Linux的单端口工业PC,另一个嵌入式的形式为模块化I/O模块的头站,具有两个外部网络端口,也运行Linux OS。图5描述了使用这些设备的测试设置的主要拓扑结构;图6则表现了设备构成。它包含200个嵌入式节点(贝加莱),具有数字量I/O模块和一个工业PC。另外,它包含五个高清摄像头(Mobotix)和一个标准工业面板。此外还用到了工业TSN交换机(TTTEch)。200个设备部署在四条总线中,每条线50个设备。可实现的性能报告在第7部分中。

图5  测试设置的主要拓扑结构

图6   测试设置的设备构成

NO:3
标准和技术

3.1 概述

图7提供了OPC UA TSN所使用的协议和服务的概述以及它们如何适应ISO/OSI参考模型的各层。以下将讨论各层的要求和特性。

3.2 物理层

以下的物理介质是工业网络中使用最广泛的,因此大多数厂商都会提供:

 基于铜

 –Fast Ethernet(100BASE-T/T1)

–Gigabit Ethernet(100BASE-T/T1)

 基于光纤

–Fast Ethernet(100BASE-T/T1)

–Gigabit Ethernet(100BASE-T/T1)

对于过程自动化,已经成立了一个工作组来开发十兆单双绞线以太网(10SPE)。该介质可以促使以太网传播至更小和成本更敏感的传感器和执行机构设备以及Zone 1危险区。

表2   工业通信类型

第3 –9列表示每种类型的要求

有关注释:

*)未使用的带宽可以被较低优先级的通信使用

元器件数据手册、IC替代型号,打造电子元器件IC百科大全!

相关文章