锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

GPS 入门 1 —— 基础知识[转]

时间:2022-12-26 08:00:00 内置扩散硅传感器

GPS入门1——基础知识[转] (2008-10-11 18:14:57)

GPS应用知识1

1. GPS系统组成

GPS gloabal Positioning System,这个东西是美国人做的。主要分为地面控制站、天空中飞行的卫星和我们手中的接收部分。

简单唠叨唠叨

先说设备, 当然,大的都是老美为我们准备的,

地面上有一个主控制站,当然在老美,在科罗拉多。三个地面天线,五个监控站,分布在世界各地。主要收集数据,计算导航信息,诊断系统状态,调度卫星。

天空中有27颗卫星,距地面20200公里。27颗卫星运行24颗,备用3颗。这些卫星已经更新了三代五款。卫星发出两个信号:L1和L2。L1:1575.42MHZ, L2:1227.60MHZ。在卫星上用氢原子钟,比我的手表更准确。

手里,就是接收机了。大大小小,千姿百态,有袖珍式、背负式、车载、船载、机载什么的。一般常见的手持机接收L1信号,双频接收器,用于精确定位。

2.关于GPS接收机

GPS现在通常是12个通道,可以同时接收12颗卫星。比如早期型号GARMIN 45C就是8通道。GPS接收器可以输出3颗卫星的信号D(即2D)数据,只有经纬度,没有高度,如果收到4颗以上的卫星,输出3颗D提供海拔高度的数据。但由于地球本身的问题,不是太标准的圆,据存在一些误差。现在有些GPS接收机内置气压表,如etrex的SUMMIT和VISTA,根据两个渠道获得的高度数据,这些机器应该更准确地综合到最终的海拔高度。

GPS接收机的第一次启动,或者上次关机距离超过800KM以上,由于存储在接收机中的星历不对,因此需要在接收机上重新定位。

GPS接收机的使用应在开阔可见的天空下使用,因此不能在室内使用。GPS精度一般在10米左右,也就是说,一条路可以看到左边还是右边。精度主要取决于卫星的信号接收和天空中可接收信号的卫星的分布。如果几颗卫星分布分散,GPS接收机提供的定位精度会更高。

3.定位精度

说到定位精度,我们必须谈谈SA和AS.

什么是SA,AS呢?别急, 这必须从头开始,否则你不能理解。

GPS有两种信号C/A码,P码。

C/A码的误差是29.3m到2.93米。一般接收机使用C/A代码计算定位。为了自身的安全考虑,美国在90代中期添加了信号SA (Selective Availability),将接收机误差增加到100米左右。2000年5月2日,SA取消,所以,我们现在GPS精度应在20米以内。

P码的误差为2.93米到0.293米是C/A十分之一的代码。但是P码只能在美国军方使用,AS(Anti-Spoofing),干扰信号添加到P码上。

总之,老美也很累。为军事定位发了很多卫星。然后我觉得不值得,想赚点钱,就给民用发了信号,精度不能太高,但是精度低的时候大家都骂妈妈。GPS掌握在老美手中,虽然免费使用,但其他国家使用也不踏实,前两天打阿富汉,美国就把这个地区拿走了GPS处理信号后,定位精度降低。

俄罗斯有自己的卫星定位系统,全球导航卫星系统(GLObal NAvigation Satellite System)。欧洲也应该发展自己的定位系统NAVSAT。中国也有自己的卫星定位,叫北斗,是双星系统,只能定位自己的国家和附近地区,目前只用于军方。



GPS应用知识2

今天说的话很无聊,但很有用。你可以和别人玩笑。

1. GPS的设置

GPS如果你想定位一台新机器,上次就提到了。此外,还有一些常用的设置,如坐标系、地图基准、参考方向、公共/英国系统、数据接口格式等。

坐标系:常用的是LAT/LON和UTM。LAT/LON经纬度表示,UTM不管他在这里。

地图基准:一般使用WGS84。

参考方位:北在哪里。北在哪里?其实有两个北,磁北和真北(简称CB和ZBY)。

指南针指的是磁北,北斗星指的北是真北。两者在不同地区的角度不同,地图上的北是真北。

公制/英制:自己选吧,我用公制。

数据接口格式:这须详细讨论。GPS其他设备可以输出实时定位数据,这涉及到数据交换协议。现在几乎一切GPS接收机遵循美国国家海洋电子协会(National Marine Electronics Association)本标准制定了所有航海电子仪器之间的通信标准,包括传输数据的格式和传输数据的通信协议。NMEA0180、0182、0183有三种协议,0183可视为前两种超集,现在正在广泛使用,0183有几种版本,V1.5 V2.1。所以,如果你的话GPS如果接收机想联系笔记本电脑上常用的接收机GPS例如,导航程序OZIEXPLORER和俺的GPSRECEIVER,就应该选择NEMA V2.0以上协议。NMEA通信速度为4800 b/S。现在有些接收机也能提供更高的速度,但说实话,没用,4800就够了。

象GARMIN,自己有一个mapsource软件,为了防止其他品牌GPS使用该软件,设计私软件GARMIN协议,只有GARMIN机器可以输出此数据,MAPSOURCE只能接收GARMIN协议,这样MAPSOURCE就只能让GARMIN使用机器,打倒!

2.表示经纬度

让我们谈谈数据表示。一般来说,从GPS获得的数据是经纬度。经纬度纬度的方法有很多。

1.) ddd.ddddd, 度 . 十进制小数部分(5位)

2.) ddd.mm.mmm,度 . 分 . 十进制小数部分(三位)

3.) ddd.mm.ss, 度 . 分 . 秒

不是所有的GPS都有这些显示,我的GPS315只能选择第二种和第三种

有多远?如果你这样问,那就太外行了。

在LAT/LON在坐标系中,纬度平均分布,从南极到北极共有180个纬度。地球直径12756KM,周长就是12756*PI,一个纬度是 12756×PI /360 = 111.133 KM (先说清楚,不准确)。

经度不是这样的,只有纬度为零,在赤道上,经度之间的距离是111.319KM,随着纬度的增加,经线越来越近,最终交汇到南北极。想想看,是的。因此,经度的单位距离与确定经度的纬度密切相关。简单的公式是:

经度1°长度=111.413cosφ,在纬度φ处。 (这个公式不准确,蒙人还行)

做题:北京经度119度,纬度40度。单位经度,单位纬度是多少?

答: 单位纬度111.133KM 单位经度111.413×COS 40 = 85.347KM

这些用途是容易理解经纬度的表现。

1.)ddd.ddddd,在北京,纬度最后一位小数增1,实际你走了多少?大约1.1M

经度最后一个小数增加了1,你实际走了多少?.85M

2.) ddd.mm.mmm,在北京,纬度最后一个小数增加了1。你实际上走了多少?.85M

经度最后一个小数增加了1,你实际上走了多少?.42M

3.) ddd.mm.ss,在北京,纬度秒增1,你实际走了多少?大约30.9M

经度秒增1,其实你走了多少?大约23.7M

今天说的都不是精确的公式,一般估计大致的数字没有问题。

 

GPS导航技术的新进展

美国的全球定位系统(GPS)导航卫星正在逐步现代化。GPS从美国空军的导航辅助设备开始,逐渐发展成军民两用的一种重要技术。GPS的精确位置与定时信息,已成为世界范围各种军民用、科研和商业活动的一种重要资源
   GPS卫星的发展及信号的改进 GPS导航卫星自1978年发射以来,其型别已由第Ⅰ,Ⅱ和ⅡA批次发展到ⅡR批次。第Ⅰ,Ⅱ和ⅡA批次卫星共有40颗,是由罗克韦尔公司制造的,而20颗ⅡR批次卫星则由洛克希德·马丁公司制造。波音公司在1996年收购了罗克韦尔的航空航天和防务业务,目前正在制造33颗更先进的ⅡF批次卫星。美国还在考虑发展采用点波束的新一代GPS卫星(GPS-Ⅲ)。
   GPS从1994年全面工作以来,改进工作一直在进行中。这是因为民用用户要求GPS具有更好的抗干扰和干涉性能、较高的安全性和完整性;军方则要求卫星发射较大的功率和新的同民用信号分离的军用信号;而对采用GPS导航的"灵巧"武器,加快信号捕获速度更为重要。
  民用GPS导航精度迄今的最大改进发生在2000年5月2日,美国停止了故意降低民用信号性能(称为选择可用性,即S/A)的做法。在S/A工作时,民用用户在99%的时间只有100米的精度。但当S/A切断后,导航精度上升,95%的位置数据可落在半径为6.3米的圆内。
   GPS卫星发送两种码:粗捕获码(C/A码)和精码(P码)。前者是民用的,后者只限于供美军及其盟军以及美国政府批准的用户使用。这些码以扩频方式调制在两种不同的频率上发射:L1波段以1575.42兆赫发射C/A和P码;而L2波段只以1227.6兆赫发射P码。
   GPS卫星导航能力最重大的改进将从2003年发射洛克希德·马丁首批ⅡR-M(修改的ⅡR)卫星开始。ⅡR-M卫星将发射增强的L1民用信号,同时发射新的L2民用信号和军用码(M码)。进一步的改进将从发射波音ⅡF批次卫星的2005年开始,ⅡF批次卫星除发射增强的L1、L2民用信号和M码外,将在1176.45兆赫增加第3个民用信号(L5)。在ⅡF发射以前,M码将从发展型过渡到工作型。因为导航卫星星座的发射需要有一段时间,故在轨道上获得全工作能力则要在2007年发射18颗L2民用信号和M码卫星后才能实现。18颗卫星组成的第三个民用信号(L5)的星座预计要到2011年才能发射完。
  此后,美军将得到抗干扰能力有所增强的新信号--M码。它能发送更大的功率,而不干涉民用接收机。M码还给军方一种新的能力,以干扰敌方对信号的利用,但其细节是保密的。
   L2民用信号即第二个民用信号称为L2C,使民用用户也能补偿大气传输不定性误差,从而使民用导航精度提高到3~10米。而美军及其盟军因一开始就能接收L1和L2中的P码,故一直具有这种能力。
   对L2的设计约束是它必须与新的M码兼容。为避免对军用L2 P(Y)接收机的任何损害,新的民用L2应具有与现有C/A码相同的功率和频谱形状。这里,括号中的Y码是P码的加密型。实际上,民用L2信号将比现有的L1 C/A信号低2.3分贝。功率较低的问题将由现代的多相关器技术加以克服,以便迅速捕获很微弱的信号。
   GPS卫星发射的信号必须现代化,同时又要保持向后兼容性。组合的民用信号与军用信号必须放在现有频带中,而且具有足够的隔离,以防互相干涉。美国决定将C/A码信号放在L1频带和新的L2频带的中部,供民用使用,而保留Y码信号。
   M码将采用一种裂谱调制法,它把其大部分功率放在靠近分配给它的频带的边缘处。抗干扰能力主要来自不干涉C/A码或Y码接收机的强大的发射功率。
   M码信号的保密设计基于下一代密码技术和新的密钥结构。为进一步分离军用和民用码,卫星对于M码将具有单独的射频链路和天线孔径。当卫星能工作时,每颗卫星可能在每个载波频率上发射两个不同的M码信号。即使由同一颗卫星以同一载波频率发射,信号将在载波、扩散码、数据信息等方面不同。
   M码的调制将采用二进制偏置载波(BOC)信号,其子载波频率为10.23兆赫,扩码率为每秒5.115百万扩散位,故称为BOC(10.23,5.115)调制,简称BOC(10,5)。因为BOC(10,5)调制与Y和C/A码信号相分离,故可以较大的功率发射,而不降低Y或C/A码接收机的性能。BOC(10,5)对于针对C/A码信号的干扰不敏感,而且与用来扩展调制的二进制序列的结构难以分辨。
   L5将位于960~1215兆赫频段,而地面测距仪/塔康(DME/TACAN)导航台和军用数据链(Link 16)已大量使用这个频段,但这只会对欧洲中部和美国高空飞行的飞机产生干扰。美国计划对在L5±9兆赫以内的DME频率进行重新分配,以便L5信号在美国的所有高度都能良好地接收。
  一些新的抗干扰技术
  由于GPS卫星发射的导航信号比较微弱,而且以固定的频率发射,因此军用GPS接收机很容易受到敌方的干扰。
  美国国防预研计划局(DARPA)正在发展一种新的抗干扰方法,采用战场上空的无人机来创造伪GPS星座,使其信号功率超过敌方干扰信号的功率。
  所谓伪卫星,就是将GPS导航信号发射机装在飞机或地面上,顶替GPS卫星来进行导航。DARPA用无人机做伪卫星的研究,称为GPX伪卫星概念,旨在使己方的部队在受干扰的战场环境中具有精确的导航能力。其方法是由飞行中无人机上的4颗伪卫星广播大功率信号,这样在战场区域上空产生一个人工GPS星座。4架"猎人"无人机就可覆盖300千米见方的战区。
  只要对现有GPS接收机的软件作些改变就可使用伪卫星发射的信号。当用实际GPS星座导航时,接收机开始需要知道卫星位置,即星历的情况,故伪卫星概念面临的挑战是采用可用的低数据率信息把4颗运动的伪卫星的位置告诉接收机。因此,DARPA和柯林斯公司设计人员的关键任务是在可用的50比特/秒信息中发送伪卫星星历。无人机的稳定性相当好,不会像战斗机那样机动;但任何运动都会使位置有点不确定。因而与采用卫星星座的导航比较,其定位总误差将增长约20%。DAPRA已用在7500米高度上的公务机上以及约3000米高度上的"猎人"无人机上试验了单颗伪卫星,导航精度从采用真卫星时的2.7米下降到4.3米。
  当然,伪卫星不一定要全部机载,也可采用地面和机载发射机混合的方案。将某些伪卫星设在地面上的缺点是减少了覆盖范围,但提高了导航精度。为了克服干扰,伪卫星可发射100瓦信号,使地面接收机处的信号强度比来自卫星的信号强度增加45分贝。
  诺斯罗普·格鲁门公司正在研制可提供30~40分贝抗干扰改进的GPS接收机。这种称为"反干扰自主完整性监控外推"的抗干扰方法将由惯性导航和GPS接收机在载波相位级进行全耦合来实现。全耦合滤波器将减小GPS跟踪回路的带宽,从而减少干扰信号进入GPS接收机的机会。
  柯林斯公司和洛克希德·马丁公司联合为JASSM空面导弹研制的G-STAR高反干扰GPS接收机采用了调零和波束操纵的方法。该接收机重11.3千克,采用了一个空间时间适配器,适配器探测出一个威胁,便将其信号调到零,并在发射导航信号的卫星方向增加增益。
  这种反干扰技术以数字方式实现,故称为数字波束成形器,它比常规的模拟调零法更为精确,同时可将接收机的波束调整到朝向可用的导航卫星。数字信号处理可通过动态移动零位来抵消噪声,增加增益,并通过一个6元天线阵来操纵波束。
  民用GPS接收机也有抗干扰的问题,但民用GPS接收机用户更关心非故意干扰。非故意干扰基本上为宽波段类型,与干扰机将其功率集中于GPS频率不同。与软件有密切关系的数字信号处理方法,在对付宽波段干扰方面是很理想的。
  美国Electro-Radiation(ERI)公司指出,常规抗干扰方法的是采用相控阵天线组成的零位操纵天线,这不仅要增加重量,且成本较高,而在接收机上实现的抗干扰技术通常只有有限的干扰剔除能力或者是专为对付某种干扰而特地设计的抗干扰能力。
  这家公司已研制出能有效地对付所有已知类型干扰的一种干扰抑制装置(ISU),它不需要昂贵和笨重的天线,可以低成本、高效的方式加装到新的和现有的GPS接收机中,既适合军用,也适合民用。
  这种干扰抑制装置包括补钉天线以及可插入任何GPS接收机天线接口的电子装置,用来抑制宽带噪声和窄带干扰。它使GPS接收机增加20分贝的抗宽带噪声能力和35分贝的抗窄带干扰能力。
   GPS在飞机着陆中的应用
  美国海军试飞员已驾驶F/A-18飞机在罗斯福号航母上利用GPS系统做了首批自动着舰。据称这种系统的性能相当于或超过目前自动着舰系统的性能。
  美国海军在发展的着舰系统是雷神公司联合精密进近与着陆系统(JPALS)的海军型,它在JPALS的基础上作了修改。雷神公司正按美国空军的合同为所有军种的飞机研制JPALS系统,系统将采用局域差分GPS修正,为固定翼飞机和旋翼机在陆上机场提供Ⅰ类和Ⅱ类仪表进近。
  美国海军牵头的舰载GPS(SRGPS)系统将取代舰载的塔康系统。它将在JPALS上增加一个单向低截获概率(LPI)数据链,为370海里范围内的飞机提供舰的位置。
  而在92.5千米半径的范围内,双向LPI数据通信采用与民航空中交通管制(ATC)现代化计划所使用的自动相关监视-广播(ADS-B)类似的位置报告将使航母跟踪多达100架飞机。
  在装有SRGPS的情况下,航母和其他舰船将能更隐蔽地与飞机联系,不必使用塔康系统和一次或二次雷达信号,并把话音通信减到最小程度。与塔康的15赫的更新率比,LPI链路将以很低的数据率(0.2赫)工作。
   FAA的GPS广域增强系统(WAAS)的发展因一再遇到问题而推迟。该系统是由雷神公司制造的,试图用赤道上空的地球同步通信卫星把完整性告警信息,以及差分修正量等其他数据传送给GPS用户,提高GPS的导航精度,以满足Ⅰ类进近的要求。
  原来对WAAS的计划是要在1999年12月开始进行60天的试验,然后在2000年晚些时候投入使用。但这些试验在2000年1月被撤消,撤消原因是由于信号中断以及误警率太高。然而,WAAS表明其精度可达到3米,远比试验所要求的7.6米要好,因而其发展工作仍在继续。据估计,安全性得到认证的WAAS将于2003年年初投入工作。
   WAAS使用日期的延误可能还会对其后的局域增强系统(LAAS)产生影响,LAAS将为机场提供精密的GPS仪表进近能力,还有能力跟踪地面上滑行的飞机。LAAS预定2002年在美国46个Ⅰ类机场和114个Ⅱ/Ⅲ类机场投入使用。联邦快递公司的一架波音727-200货机率先在商业运营中采用具有LAAS能力的卫星着陆系统(SLS)进行了精密进近。
   GPS的微小型化及其在炮弹制导中的应用
  随着GPS/惯性制导系统成本的降低和体积的减小,现在甚至连一些炮弹也将采用GPS/惯性制导。美国英特斯台特电子公司(IEC)已研制了一种炮弹制导用微小型GPS接收机,装在美国海军和陆军的火箭助推的127毫米炮弹的尖头部。这种GPS接收机能承受炮弹发射时的12500g以上的过载,并能迅速截获GPS信号。这种接收机采用快速截获/直接Y码处理,不到6秒就能截获信号,并将跟踪多达8颗卫星。为抑制干扰信号,它被设计成与惯性测量装置紧耦合工作,并采用某种窄带跟踪回路技术。其制导系统中的惯性传感器采用了硅微机电系统(MEMS)技术,因而体积小,成本低。为减轻GPS时钟振荡器在长期储存中的相位不稳定的问题,采用了一种先进的相关器,对GPS信号进行时域搜索以及数据变换,用来搜寻时钟振荡器产生的不定性,从而能直接捕获Y码。

锐单商城拥有海量元器件数据手册IC替代型号,打造电子元器件IC百科大全!

相关文章