锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

新发现:信道矩阵H的右奇异矩阵可以被表征为发送端导向向量的线性组合

时间:2022-10-15 16:00:00 cnr25d121k电阻

我们考虑一个extended-Saleh-Valenzuela信道模型,uniform linear array (ULA),在理想假设条件下, H \boldsymbol H H由UE没有近场损伤 L L L簇(clusters)/确定路径散射,表示:
H = N r N t L ? ∑ l = 1 L α l u l v l H (1) \boldsymbol H = \sqrt{ \frac{N_r N_t}{L} } \cdot \sum_{l=1}^L \alpha_l \boldsymbol u_l \boldsymbol v_l^H \tag{1} H=LNrNt /path> l=1LαlulvlH(1)

其中 α l \alpha_l αl是信道第 l l l条径的复增益, u l ∈ C N r × 1 \boldsymbol u_l \in \mathbb C^{N_r \times 1} ulCNr×1是第 l l l条径在接收端的导向向量(receiver array steering vector), v l ∈ C N t × 1 \boldsymbol v_l \in \mathbb C^{N_t \times 1} vlCNt×1是第 l l l条径在发送端的导向向量(transmit array steering vector), N t , N r N_t, N_r Nt,Nr分别为发送天线数和接收天线数。

我们定义
u l = [ 1 , e j k d R cos ⁡ ( ϕ R , l ) , ⋯   , e j ( N r − 1 ) k d R cos ⁡ ( ϕ R , l ) ] T ∈ C N r × 1 (2) \boldsymbol u_l = [1, e^{jkd_R \cos( \phi_{R,l})}, \cdots, e^{j(N_r - 1)kd_R \cos( \phi_{R,l})}]^T \in \mathbb C^{N_r \times 1} \tag{2} ul=[1,ejkdRcos(ϕR,l),,ej(Nr1)kdRcos(ϕR,l)]TCNr×1(2)

v l = [ 1 , e j k d T cos ⁡ ( ϕ T , l ) , ⋯   , e j ( N t − 1 ) k d T cos ⁡ ( ϕ T , l ) ] T ∈ C N t × 1 (3) \boldsymbol v_l = [1, e^{jkd_T \cos( \phi_{T,l})}, \cdots, e^{j(N_t - 1)kd_T \cos( \phi_{T,l})}]^T \in \mathbb C^{N_t \times 1} \tag{3} vl=[1,ejkdTcos(ϕT,l),,ej(Nt1)kdTcos(ϕT,l)]TCNt×1(3)

其中, k = 2 π λ k=\frac{2\pi}{\lambda} k=λ2π是波数(wave number), d T , d R d_T, d_R dT,dR分别表示发送和接收端阵列天线间的距离, ϕ R , l \phi_{R,l} ϕR,l理解为第 l l l条径的到达角(AOA: Angle of Arrival), ϕ T , l \phi_{T,l} ϕT,l理解为第 l l l条径的出发角(AOD: Angle of Departure)。

定理:若 H ∈ C N r × N t \boldsymbol H \in \mathbb C^{N_r \times N_t} HCNr×Nt为式(1)中的信道矩阵,那么 H H H ∈ C N t × N t \boldsymbol {H}^H \boldsymbol H \in \mathbb C^{N_t \times N_t} HHHCNt×Nt的特征向量(eigenvector)可以被表征为 { v 1 , v 2 , ⋯   , v L } \{ \boldsymbol v_1, \boldsymbol v_2, \cdots, \boldsymbol v_L \} { v1,v2,,vL}(发送端的array steering vector)的线性组合。

证明:事实上, H H H ∈ C N t × N t \boldsymbol {H}^H \boldsymbol H \in \mathbb C^{N_t \times N_t} HHHCNt×Nt的特征向量/矩阵等价于矩阵 H \boldsymbol H H的右奇异向量/矩阵
L N t N r H H H = ∑ i ∑ j α i ∗ α j ⋅ ( u i H u j ) ⋅ v i v j H = V ˉ A V ˉ H (4) \frac{L}{N_t N_r} \boldsymbol {H}^H \boldsymbol H = \sum_{i} \sum_{j} \alpha_i^{*} \alpha_j \cdot (\boldsymbol u^H_i \boldsymbol u_j) \cdot \boldsymbol v_i \boldsymbol v_j^H = \bar {\boldsymbol V} \boldsymbol A \bar {\boldsymbol V}^H \tag{4} NtNrLHHH=ijαiαj(uiHuj)vivjH=VˉAVˉ元器件数据手册、IC替代型号,打造电子元器件IC百科大全!

相关文章