锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

Linux内核配置选项

时间:2022-09-08 22:00:00 27000mfd电容电容tp结构整理mc7815ct集成电路totv电源专用固态电容电容c80145mfd电容



http://blog.csdn.net/wdsfup/article/details/52302142

http://www.manew.com/blog-166674-12962.html


Gentoo Linux
Gentoo内核(gentoo-sources)特有的选项

Gentoo Linux support
CONFIG_GENTOO_LINUX
选"Y"之后会自动选择那些。Gentoo内核选项必须在环境中打开,以避免用户遗漏一些必要的选项,减少用户配置内核的难度.建议选"Y".
Linux dynamic and persistent device naming (userspace devfs) support
CONFIG_GENTOO_LINUX_UDEV
目前这个项目的作用只是开放CONFIG_TMPFS和CONFIG_DEVTMPFS所依赖的选项.CONFIG_TMPFS是为了在"/dev/shm","/run","/sys/fs/cgroup"挂载在三个目录中tmpfs文件系统,CONFIG_DEVTMPFS是为了在"/dev"目录挂载devtmpfs文件系统.建议选"Y".
Support for init systems, system and service managers
"init"系统(系统与服务管理器)."init"内核启动的第一个用户空间程序(PID=1),也是所有用户态过程"大总管"([提示]所有核态过程的大总管都是PID=2的[kthreadd]).
OpenRC, runit and other script based systems and managers
CONFIG_GENTOO_LINUX_INIT_SCRIPT
OpenRC是Gentoo传统的"init"基于使用的系统 SysVinit传统的脚本启动技术.选"Y"后,所有OpenRC目前只有必要的内核选项(CONFIG_BINFMT_SCRIPT)将自动选择.不确定的选"Y".
systemd
CONFIG_GENTOO_LINUX_INIT_SYSTEMD
虽然不完美,但也不完美 systemd确实是目前风头最强的。"init"系统,大有在Linux世界统一江湖的霸气和潜力.仅在你打算 从OpenRC迁移到systemd时选"Y".选"Y"之后,内核中的所有被子 systemd依赖的选项都将被自动选中,包括 systemd总共有20个建议(而非必要)选项.


64-bit kernel
CONFIG_64BIT
编译64位内核.本文仅讲述x86_64(AMD64)平台的核心编译,所以这是必要的选择.

General setup
常规设置

Cross-compiler tool prefix
CONFIG_CROSS_COMPILE
交叉编译工具的前缀(例如(例如)"arm-linux-"相当于使用"make CROSS_COMPILE=arm-linux-"进行编译).除非您想在默认情况下自动交叉编译,否则不要使用此选项.
Local version - append to kernel release
CONFIG_LOCALVERSION
在内核版本后面添加自定义版本字符串(最大64字符)"uname -a"命令看到
Automatically append version information to the version string
CONFIG_LOCALVERSION_AUTO
在版本中自动字符串(CONFIG_LOCALVERSION)后面添加版本信息(类似)"-gxxxxxxxx"格式),需要有perl以及git仓库支持
Kernel compression mode
可选择内核镜像的压缩格式Gzip/Bzip2/LZMA/XZ/LZO推荐使用格式之一XZ格式.您的系统需要相应的压缩工具.
Default hostname
CONFIG_DEFAULT_HOSTNAME
设置默认主机名称,默认值为"(none)".用户可以随后使用系统调用sethostname()修改主机名称.
Support for paging of anonymous memory (swap)
CONFIG_SWAP
使用交换分区或交换文件作为虚拟内存
System V IPC
CONFIG_SYSVIPC
System V 进程间通信(IPC)许多程序需要支持进程间同步和交换数据的功能.选"Y",除非你真的知道你在做什么
POSIX Message Queues
CONFIG_POSIX_MQUEUE
POSIX消息队列是POSIX IPC的一部分,如果你想编译和运行那些使用"mq_*"系统调用程序(例如Solaris开发程序)必须打开此选项.POSIX可以作为消息队列"mqueue"文件系统挂载,方便用户操作队列.不确定的选"Y".
open by fhandle syscalls
CONFIG_FHANDLE
用户程序可以使用句柄(而不是文件名)来跟踪文件(使用)open_by_handle_at(2)/name_to_handle_at(2)系统调用),即使某个文件被重命名,用户程序仍然可以定位文件.这一特能有助于实现用户空间文件服务器(userspace file server).不确定的选"N",但使用systemd的建议选"Y".
Auditing support
CONFIG_AUDIT
支持内核审计(跟踪每个过程的活动),一些与安全相关的内核系统(如SELinux)需要它
Enable system-call auditing support
CONFIG_AUDITSYSCALL
审计系统调用.它可以独立使用,也可以被其他核系统(如SELinux)使用.
Make audit loginuid immutable
CONFIG_AUDIT_LOGINUID_IMMUTABLE
固定的loginuid.在使用 systemd等系统应该打开(login服务由init过程负责重启),在使用中 SysVinitUpstart系统应关闭此类系统(login服务由系统管理员手动重启。. OpenRC是基础SysVinit的系统.
IRQ subsystem
IRQ子系统(中断请求)
Expose hardware/virtual IRQ mapping via debugfs
CONFIG_IRQ_DOMAIN_DEBUG
通过debugfs中的irq_domain_mapping硬件显示给用户IRQ号/Linux IRQ号码之间的对应关系.仅用于开发调试.
Support sparse irq numbering
CONFIG_SPARSE_IRQ
稀疏IRQ号支持.它允许在小型设备(如嵌入式设备)上定义一个高度CONFIG_NR_CPUS值,但仍然不想占用太多的核心" memory footprint"(一个可操作或管理的内存区域).稀疏IRQ也更适合NUMA因为,因为它是对的NUMA更友好的方式分发中断描述符.不确定的选"N".
Timers subsystem
Linux内核时钟子系统
Timer tick handling
内核时钟滴答处理程序,更多信息可以参考内核源码树下的" Documentation/timers/NO_HZ.txt"文件
Periodic timer ticks (constant rate, no dynticks)
CONFIG_HZ_PERIODIC
无论CPU是否需要,都强制按照固定频率不断触发时钟中断.这是最耗电的方式,不推荐使用
Idle dynticks system (tickless idle)
CONFIG_NO_HZ_IDLE
CPU在空闲状态时不产生不必要的时钟中断,以使处理器能够在较低能耗状态下运行以节约电力,适合于大多数场合
Full dynticks system (tickless)
CONFIG_NO_HZ_FULL
完全无滴嗒:即使CPU在忙碌状态也尽可能关闭所有时钟中断,适用于CPU在同一时间仅运行一个任务,或者用户空间程序极少与内核交互的场合.即使开启此选项,也需要额外设置"nohz_full=?"内核命令行参数才能真正生效.
Full dynticks system on all CPUs by default
CONFIG_NO_HZ_FULL_ALL
即使没有设置"nohz_full"引导参数,也默认对所有CPU(boot CPU 除外)开启完全无滴答特性.
Old Idle dynticks config
CONFIG_NO_HZ
等价于CONFIG_NO_HZ_IDLE,临时用来兼容老版本内核选项,未来会被删除.
High Resolution Timer Support
CONFIG_HIGH_RES_TIMERS
高精度定时器(hrtimer)是从2.6.16开始引入,用于取代传统timer wheel( 基于jiffies定时器)的时钟子系统.可以降低与内核其他模块的耦合性,还可以提供比1毫秒更高的精度(因为它可以读取HPET/TSC等新型硬件时钟源),可以更好的支持音视频等对时间精度要求较高的应用.建议选"Y".[提示]这里说的"定时器"是指"软件定时器",而不是主板或CPU上集成的 硬件时钟发生器(ACPI PM Timer/HPET Timer/TSC Timer).
CPU/Task time and stats accounting
CPU/进程的时间及状态统计
Cputime accounting
CPU时间统计方式
Simple tick based cputime accounting
CONFIG_TICK_CPU_ACCOUNTING
简单的基于滴答的统计,适用于大多数场合
Deterministic task and CPU time accounting
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
通过读取CPU计数器进行统计,可以提供更精确的统计,但是对性能有一些不利影响.
Full dynticks CPU time accounting
CONFIG_VIRT_CPU_ACCOUNTING_GEN
利用上下文跟踪子系统,通过观察每一个内核与用户空间的边界进行统计.该选项对性能有显著的不良影响,目前仅用于完全无滴答子系统(CONFIG_NO_HZ_FULL)的调试
Fine granularity task level IRQ time accounting
CONFIG_IRQ_TIME_ACCOUNTING
通过读取TSC时间戳进行统计,这是统计进程IRQ时间的更细粒度的统计方式,但对性能有些不良影响(特别是在RDTSC指令速度较慢的CPU上).
BSD Process Accounting
CONFIG_BSD_PROCESS_ACCT
用户空间程序可以要求内核将进程的统计信息写入一个指定的文件,主要包括进程的创建时间/创建者/内存占用等信息.
BSD Process Accounting version 3 file format
CONFIG_BSD_PROCESS_ACCT_V3
使用新的v3版文件格式,可以包含每个进程的PID和其父进程的PID,但是不兼容老版本的文件格式.比如  GNU Accounting Utilities 这样的工具可以识别v3格式
Export task/process statistics through netlink
CONFIG_TASKSTATS
通过 netlink接口向用户空间导出进程的统计信息,与 BSD Process Accounting 的不同之处在于这些统计信息在整个进程生存期都是可用的.
Enable per-task delay accounting
CONFIG_TASK_DELAY_ACCT
在统计信息中包含进程等候系统资源(cpu,IO同步,内存交换等)所花费的时间
Enable extended accounting over taskstats
CONFIG_TASK_XACCT
在统计信息中包含进程的更多扩展信息.
Enable per-task storage I/O accounting
CONFIG_TASK_IO_ACCOUNTING
在统计信息中包含进程在存储设备上的I/O字节数.
RCU Subsystem
RCU(Read-Copy Update)子系统.在读多写少的情况下,这是一个高性能的机制,对于被RCU保护的共享数据结构,读者不需要获得任何锁就可以访问它(速度非常快),但写者在访问它时首先拷贝一个副本,然后对副本进行修改,最后使用一个回调机制在适当的时机把指向原来数据的指针重新指向新的被修改的数据,速度非常慢.RCU只适用于读多写少的情况:如网络路由表的查询更新,设备状态表的维护,数据结构的延迟释放以及多径I/O设备的维护等.
RCU Implementation
RCU的实现方式
Tree-based hierarchical RCU
CONFIG_TREE_RCU
基于树型分层结构的实现.最适用于多CPU的非实时系统.
Preemptible tree-based hierarchical RCU
CONFIG_TREE_PREEMPT_RCU
抢占式基于树型分层结构的实现.最适用于那些要求快速响应的多CPU实时系统.
UP-only small-memory-footprint RCU
CONFIG_TINY_RCU
最简单的实现,能够大幅降低RCU系统的内存占用.最适用于单CPU的非实时系统.
Preemptible UP-only small-memory-footprint RCU
CONFIG_TINY_PREEMPT_RCU
抢占式简单实现,能够大幅降低RCU系统的内存占用.最适用于那些要求快速响应的单CPU实时系统.
Consider userspace as in RCU extended quiescent state
CONFIG_RCU_USER_QS
在内核和用户边界设置钩子函数,将运行在用户态的CPU从全局RCU状态机制中移除,这样就不会在RCU系统中维护此CPU的时钟滴答.除非你想要帮助开发CONFIG_NO_HZ_FULL模块,否则不要打开此选项,而且它还会对性能有不利影响.
Force context tracking
CONFIG_CONTEXT_TRACKING_FORCE
默认在内核和用户边界进行探测(上下文跟踪),以便测试依赖于此特性的各种功能(比如用户空间的 RCU extended quiescent state),这个特性目前仅用于调试目的,未来也许会用于为CONFIG_NO_HZ_FULL模块提供支持
Tree-based hierarchical RCU fanout value
CONFIG_RCU_FANOUT
这个选项控制着树形RCU层次结构的端点数(fanout),以允许RCU子系统在拥有海量CPU的系统上高效工作.这个值必须至少等于CONFIG_NR_CPUS的1/4次方(4次根号).生产系统上应该使用默认值(64).仅在你想调试RCU子系统时才需要减小此值.
Tree-based hierarchical RCU leaf-level fanout value
CONFIG_RCU_FANOUT_LEAF
这个选项控制着树形RCU层次结构的叶子层的端点数(leaf-level fanout).对于期望拥有更高能耗比(更节能)的系统,请保持其默认值(16).对于拥有成千上万个CPU的系统来说,应该考虑将其设为最大值(CONFIG_RCU_FANOUT).
Disable tree-based hierarchical RCU auto-balancing
CONFIG_RCU_FANOUT_EXACT
强制按照CONFIG_RCU_FANOUT_LEAF的值,而不是使用自动平衡树结构来实现RCU子系统.目前仅用于调试目的.未来也许会用于增强NUMA系统的性能.
Accelerate last non-dyntick-idle CPU's grace periods
CONFIG_RCU_FAST_NO_HZ
即使CPU还在忙碌,也允许进入dynticks-idle状态,并且阻止RCU每4个滴答就唤醒一次该CPU,这样能够更有效的使用电力,同时也拉长了RCU grace period的时间,造成性能降低.如果能耗比对你而言非常重要(你想节省每一分电力),并且你不在乎系统性能的降低(CPU唤醒时间增加),可以开启此选项.台式机和服务器建议关闭此选项.
Enable RCU priority boosting
CONFIG_RCU_BOOST
允许提升RCU子系统的实时优先级(包括读操作与写操作),以避免RCU操作被阻塞太长时间.如果系统的CPU负载经常很重,或者你需要快速的实时响应系统,那么就选"Y",否则应该选"N".
Real-time priority to boost RCU readers to
CONFIG_RCU_BOOST_PRIO
允许提升被长时间抢占(阻塞)的RCU读操作的实时优先级到什么程度.取值范围是[1,99].默认值"1"适用于实时应用程序中不包含CPU密集型(CPU-bound)线程的常规场合(例如大多数桌面系统).但是如果你的实时应用程序拥有一个或多个CPU密集型线程,那么可能需要增加这个值,具体可以参考内核帮助的说明.仅在你确实理解了的情况下再改变默认值.
Milliseconds to delay boosting after RCU grace-period start
CONFIG_RCU_BOOST_DELAY
在提升RCU读操作的优先级之前,允许有多长时间潜伏期(阻塞),取值范围是[0,3000],单位是毫秒,默认值是"500".不确定的请使用默认值.
Offload RCU callback processing from boot-selected CPUs
CONFIG_RCU_NOCB_CPU
如果你想帮助调试内核可以开启,否则请关闭.
Build-forced no-CBs CPUs
在开启CONFIG_RCU_NOCB_CPU选项的情况下,指定哪些CPU是No-CB CPU,相当于预先设置"rcu_nocbs="内核引导参数.
Kernel .config support
CONFIG_IKCONFIG
把内核的配置信息编译进内核中,以后可以通过scripts/extract-ikconfig脚本从内核镜像中提取这些信息
Enable access to .config through /proc/config.gz
CONFIG_IKCONFIG_PROC
允许通过 /proc/config.gz 文件访问内核的配置信息
Kernel log buffer size
CONFIG_LOG_BUF_SHIFT
设置内核日志缓冲区的大小: 12(最小值)=4KB,...,16=64KB,17=128KB,18=256KB,...,21(最大值)=2048KB
Automatically enable NUMA aware memory/task placement
CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
NUMA(Non-Uniform Memory Access Architecture)系统上自动启用进程/内存均衡,也就是自动开启CONFIG_NUMA_BALANCING特性.
Memory placement aware NUMA scheduler
CONFIG_NUMA_BALANCING
允许自动根据NUMA系统的节点分布状况进行进程/内存均衡(方法很原始,就是简单的内存移动).这个选项对UMA系统无效.[提示]UMA系统的例子:(1)只有一颗物理CPU(即使是多核)的电脑,(2)不支持"虚拟NUMA",或"虚拟NUMA"被禁用的虚拟机(即使所在的物理机是NUMA系统)
Control Group support
CONFIG_CGROUPS
Cgroup(Control Group)是一种进程管理机制,可以针对一组进程进行系统资源的分配和管理,可用于Cpusets,CFS(完全公平调度器),内存管理等子系统.此外,systemd也依赖于它.更多细节可以参考内核的" Documentation/cgroups/cgroups.txt"文件
Example debug cgroup subsystem
CONFIG_CGROUP_DEBUG
导出cgroups框架的调试信息,仅用于调试目的.
Freezer cgroup subsystem
CONFIG_CGROUP_FREEZER
允许冻结/解冻cgroup内所有进程
Device controller for cgroups
CONFIG_CGROUP_DEVICE
允许为cgroup建立设备白名单,这样cgroup内的进程将仅允许对白名单中的设备进行mknod/open操作
Cpuset support
CONFIG_CPUSETS
CPUSET支持:允许将CPU和内存进行分组,并指定某些进程只能运行于特定的分组.这里有一篇 CPUSET的用法
Include legacy /proc//cpuset file
CONFIG_PROC_PID_CPUSET
提供过时的 /proc//cpuset 文件接口
Simple CPU accounting cgroup subsystem
CONFIG_CGROUP_CPUACCT
提供一个简单的资源控制器(Resource Controller,用于实现一组任务间的资源共享),以监控cgroup内所有进程的总CPU使用量.
Resource counters
CONFIG_RESOURCE_COUNTERS
为cgroup提供独立于controller资源计数器
Memory Resource Controller for Control Groups
CONFIG_MEMCG
为cgroup添加内存资源控制器,包含匿名内存和页面缓存( Documentation/cgroups/memory.txt).开启此选项后,将会增加关联到每个内存页fixed memory大小,具体在64位系统上是40bytes/PAGE_SIZE.仅在你确实明白什么是  memory resource controller 并且确实需要的情况下才开启此选项.此功能可以通过命令行选项"cgroup_disable=memory"进行关闭.
Memory Resource Controller Swap Extension
CONFIG_MEMCG_SWAP
给  Memory Resource Controller 添加对swap的管理功能.这样就可以针对每个cgroup限定其使用的mem+swap总量.如果关闭此选项, memory resource controller 将仅能限制mem的使用量,而无法对swap进行控制(进程有可能耗尽swap).开启此功能会对性能有不利影响,并且为了追踪swap的使用也会消耗更多的内存(如果swap的页面大小是4KB,那么每1GB的swap需要额外消耗512KB内存),所以在内存较小的系统上不建议开启.
Memory Resource Controller Swap Extension enabled by default
CONFIG_MEMCG_SWAP_ENABLED
如果开启此选项,那么将默认开启CONFIG_MEMCG_SWAP特性,否则将默认关闭.即使默认开启也可以通过内核引导参数"swapaccount=0"禁止此特性.
Memory Resource Controller Kernel Memory accounting
CONFIG_MEMCG_KMEM
为 Memory Resource Controller 添加对内核对象所占用内存的管理功能.和标准的 Memory Resource Controller 对内存的控制不一样之处在于:这些内核对象所占用的内存是基于每个内存页的,并且可以被swap到硬盘.使用这个功能可以确保cgroup中的进程不会单独耗尽所有内核资源.
HugeTLB Resource Controller for Control Groups
CONFIG_CGROUP_HUGETLB
为cgroup添加对 HugeTLB页的资源控制功能.开启此选项之后,你就可以针对每个cgroup限定其对 HugeTLB的使用.
Enable perf_event per-cpu per-container group (cgroup) monitoring
CONFIG_CGROUP_PERF
将per-cpu模式进行扩展,使其可以监控属于特定cgroup并运行于特定CPU上的线程
Group CPU scheduler
CONFIG_CGROUP_SCHED
让CPU调度程序可以在不同的cgroup之间分配CPU的带宽
Group scheduling for SCHED_OTHER
CONFIG_FAIR_GROUP_SCHED
公平CPU调度策略,也就是在多个cgroup之间平均分配CPU带宽." 鸡血补丁"CONFIG_SCHED_AUTOGROUP(自动分组调度功能)依赖于它.
CPU bandwidth provisioning for FAIR_GROUP_SCHED
CONFIG_CFS_BANDWIDTH
允许用户为运行在CONFIG_FAIR_GROUP_SCHED中的进程定义CPU带宽限制.对于没有定义CPU带宽限制的cgroup而言,可以无限制的使用CPU带宽.详情参见  Documentation/scheduler/sched-bwc.txt 文件.
Group scheduling for SCHED_RR/FIFO
CONFIG_RT_GROUP_SCHED
允许用户为cgroup分配实时CPU带宽,还可以对非特权用户的实时进程组进行调度.详情参见  Documentation/scheduler/sched-rt-group.txt 文档.
Block IO controller
CONFIG_BLK_CGROUP
通用的块IO控制器接口,可以用于实现各种不同的控制策略.目前,IOSCHED_CFQ用它来在不同的cgroup之间分配磁盘IO带宽(需要额外开启CONFIG_CFQ_GROUP_IOSCHED), block io throttle也会用它来针对特定块设备限制IO速率上限(需要额外开启CONFIG_BLK_DEV_THROTTLING).更多信息可以参考" Documentation/cgroups/blkio-controller.txt"文件.
Enable Block IO controller debugging
CONFIG_DEBUG_BLK_CGROUP
仅用于调试 Block IO controller 目的.
Checkpoint/restore support
CONFIG_CHECKPOINT_RESTORE
在内核中添加"检查点/恢复"支持.也就是添加一些辅助的代码用于设置进程的 text, data, heap 段,并且在 /proc 文件系统中添加一些额外的条目.主要用于调试目的.不确定的选"N".
Namespaces support
CONFIG_NAMESPACES
命名空间支持.用于支持基于容器的轻量级虚拟化技术(比如 LXC).
UTS namespace
CONFIG_UTS_NS
uname() 系统调用的命名空间支持
IPC namespace
CONFIG_IPC_NS
进程间通信对象ID的命名空间支持
User namespace
CONFIG_USER_NS
允许容器(也就是 VServer)使用user命名空间.如果开启此项,建议同时开启CONFIG_MEMCG和CONFIG_MEMCG_KMEM选项,以允许用户空间使用"memory cgroup"限制非特权用户的内存使用量.不确定的选"N".
PID Namespaces
CONFIG_PID_NS
进程PID命名空间支持
Network namespace
CONFIG_NET_NS
网络协议栈的命名空间支持
Require conversions between uid/gids and their internal representation
CONFIG_UIDGID_STRICT_TYPE_CHECKS
强制将uid/gid转换为内部表示形式,以让那些未对uid/gid进行转换的内核子系统代码也能正常编译.不确定的选"N".
Automatic process group scheduling
CONFIG_SCHED_AUTOGROUP
每个TTY动态地创建任务分组(cgroup),这样就可以降低高负载情况下的桌面延迟.也就是传说中的桌面" 鸡血补丁",桌面用户建议开启.但服务器建议关闭.
Enable deprecated sysfs features to support old userspace tools
CONFIG_SYSFS_DEPRECATED
为了兼容旧版本的应用程序而保留过时的sysfs特性.仅当在使用2008年以前的发行版时才需要开启,2009年之后的发行版中必须关闭.
Enable deprecated sysfs features by default
CONFIG_SYSFS_DEPRECATED_V2
默认开启上述特性
Kernel->user space relay support (formerly relayfs)
CONFIG_RELAY
在某些文件系统(比如debugfs)中提供 中继(relay)支持(从内核空间向用户空间传递大批量数据).主要用于调试内核.
Initial RAM filesystem and RAM disk (initramfs/initrd) support
CONFIG_BLK_DEV_INITRD
初始内存文件系统( initramfs,2.6以上内核的新机制,使用cpio格式,占据的内存随数据的增减自动增减)与初始内存盘( initrd,2.4以前内核遗留的老机制,使用loop设备,占据一块固定的内存,需要额外开启CONFIG_BLK_DEV_RAM选项才生效)支持,一般通过lilo/grub的initrd指令加载.更多细节可以参考" Documentation/initrd.txt"文件,关于 initrd到initramfs的进化( 墙内镜像),可以参考IBM上的两篇文章: Linux2.6 内核的 Initrd 机制解析Linux 初始 RAM 磁盘(initrd)概述.
Initramfs source file(s)
CONFIG_INITRAMFS_SOURCE
如果你想 将initramfs镜像直接嵌入内核(比如嵌入式环境或者想使用 EFI stub kernel),而不是通过lilo/grub这样的引导管理器加载,可以使用此选项,否则请保持空白.这个选项指明用来制作initramfs镜像的原料,可以是一个.cpio文件或一个空格分隔的目录与文件列表.细节可以参考" Documentation/early-userspace/README"文档.
User ID to map to 0 (user root)
INITRAMFS_ROOT_UID
此选项仅在CONFIG_INITRAMFS_SOURCE中包含目录时才有效,将此值设为非零(例如"37"),那么所有UID=37的文件在打包到initramfs镜像内时,其UID都将被设为"0".
Group ID to map to 0 (group root)
INITRAMFS_ROOT_GID
此选项仅在CONFIG_INITRAMFS_SOURCE中包含目录时才有效,将此值设为非零(例如"37"),那么所有GID=37的文件在打包到initramfs镜像内时,其GID都将被设为"0".
Support initial ramdisks compressed using gzip
CONFIG_RD_GZIP
支持经过gzip压缩的ramdisk或cpio镜像
Support initial ramdisks compressed using bzip2
CONFIG_RD_BZIP2
支持经过bzip2压缩的ramdisk或cpio镜像
Support initial ramdisks compressed using LZMA
CONFIG_RD_LZMA
支持经过LZMA压缩的ramdisk或cpio镜像
Support initial ramdisks compressed using XZ
CONFIG_RD_XZ
支持经过XZ压缩的ramdisk或cpio镜像
Support initial ramdisks compressed using LZO
CONFIG_RD_LZO
支持经过LZO压缩的ramdisk或cpio镜像
Built-in initramfs compression mode
选择initramfs镜像的压缩格式."gzip"是兼容性最好的格式,但是压缩率却最低."XZ"是目前渐渐流行的格式,压缩率高,解压速度也不慢.
Optimize for size
CONFIG_CC_OPTIMIZE_FOR_SIZE
编译时优化内核尺寸(使用GCC的"-Os"而不是"-O2"参数编译),这会得到更小的内核,但是运行速度可能会更慢.主要用于嵌入式环境.
Configure standard kernel features (expert users)
CONFIG_EXPERT
配置标准的内核特性(仅供专家使用).这个选项允许你改变内核的"标准"特性(比如用于需要"非标准"内核的特定环境中),仅在你确实明白自己在干什么的时候才开启.
Enable 16-bit UID system calls
CONFIG_UID16
允许对UID系统调用进行过时的16-bit包装,建议关闭
Sysctl syscall support
CONFIG_SYSCTL_SYSCALL
二进制sysctl接口支持.由于现在流行直接通过/proc/sys以ASCII明码方式修改内核参数(需要开启CONFIG_PROC_SYSCTL选项),所以已经不需要再通过二进制接口去控制内核参数,建议关闭它以减小内核尺寸.
Load all symbols for debugging/ksymoops
CONFIG_KALLSYMS
装载所有的调试符号表信息,会增大内核体积,仅供调试时选择
Include all symbols in kallsyms
CONFIG_KALLSYMS_ALL
/proc/kallsyms中包含内核知道的所有符号,内核将会增大300K,仅在你确实需要的时候再开启
Enable support for printk
CONFIG_PRINTK
允许内核向终端打印字符信息.如果关闭,内核在初始化过程中将不会输出字符信息,这会导致很难诊断系统故障.仅在你确实不想看到任何内核信息时选"N".否则请选"Y".
BUG() support
CONFIG_BUG
显示故障和失败条件(BUG和WARN),禁用它将可能导致隐含的错误被忽略.建议仅在嵌入式设备或者无法显示故障信息的系统上关闭
Enable ELF core dumps
CONFIG_ELF_CORE
内存转储支持,可以帮助调试ELF格式的程序,用于调试和开发用户态程序
Enable PC-Speaker support
CONFIG_PCSPKR_PLATFORM
主板上的 蜂鸣器支持. 主板上的蜂鸣器只能发出或长或短的"滴"或"嘟嘟"声,一般用于系统报警.不要和能够播放音乐的扬声器混淆.如果你的主板上没有就关闭,有的话(开机自检完成后一般能听到"滴"的一声)还是建议开启.
Enable full-sized data structures for core
CONFIG_BASE_FULL
在内核中使用全尺寸的数据结构.禁用它将使得某些内核的数据结构减小以节约内存,但是将会降低性能
Enable futex support
CONFIG_FUTEX
快速用户空间互斥(fast userspace mutexes)可以使线程串行化以避免竞态条件,也提高了响应速度.禁用它将导致内核不能正确的运行基于glibc的程序
Enable eventpoll support
CONFIG_EPOLL
Epoll系列系统调用(epoll_*)支持,这是当前在Linux下开发大规模并发网络程序(比如Nginx)的热门人选,设计目的是取代既有POSIX select(2)与poll(2)系统接口,建议开启.
Enable signalfd() system call
CONFIG_SIGNALFD
signalfd()系统调用支持,建议开启.传统的处理信号的方式是注册信号处理函数,由于信号是异步发生的,要解决数据的并发访问和可重入问题.signalfd可以将信号抽象为一个文件描述符,当有信号发生时可以对其read,这样可以将信号的监听放到select/poll/epoll监听队列中.
Enable timerfd() system call
CONFIG_TIMERFD
timerfd()系统调用支持,建议开启.timerfd可以实现定时器功能,将定时器抽象为文件描述符,当定时器到期时可以对其read,这样也可以放到select/poll/epoll监听队列中.更多信息可以参考 linux新的API signalfd、timerfd、eventfd使用说明
Enable eventfd() system call
CONFIG_EVENTFD
eventfd()系统调用支持,建议开启.eventfd实现了线程之间事件通知的方式,eventfd的缓冲区大小是sizeof(uint64_t),向其write可以递增这个计数器,read操作可以读取,并进行清零.eventfd也可以放到select/poll/epoll监听队列中.当计数器不是0时,有可读事件发生,可以进行读取.
Use full shmem filesystem
CONFIG_SHMEM
完全使用shmem来代替ramfs.shmem是基于共享内存的文件系统(可以使用swap),在启用CONFIG_TMPFS后可以挂载为tmpfs供用户空间使用,它比简单的ramfs先进许多.仅在微型嵌入式环境中且没有swap的情况下才可能会需要使用原始的ramfs.
Enable AIO support
CONFIG_AIO
开启POSIX异步IO支持.它常常被高性能的多线程程序使用,建议开启
Enable PCI quirk workarounds
CONFIG_PCI_QUIRKS
开启针对多种PCI芯片组的错误规避功能,仅在确定你的PCI芯片组确实没有没有任何bug时才关闭此功能.至于究竟哪些芯片组有bug,你可以直接打开" drivers/pci/quirks.c"文件查看.不确定的选"Y".
Embedded system
CONFIG_EMBEDDED
如果你是为嵌入式系统编译内核,可以开启此选项,这样一些高级选项就会显示出来.单独选中此项本身对内核并无任何改变.
Kernel Performance Events And Counters
CONFIG_PERF_EVENTS
性能相关的事件和计数器支持(既有硬件的支持也有软件的支持).大多数现代CPU都会通过性能计数寄存器对特定类型的硬件事件(指令执行,缓存未命中,分支预测失败)进行计数,同时又丝毫不会减慢内核和应用程序的运行速度.这些寄存器还会在某些事件计数到达特定的阈值时触发中断,从而可以对代码进行性能分析. Linux Performance Event 子系统对上述特性进行了抽象,提供了针对每个进程和每个CPU的计数器,并可以被 tools/perf/ 目录中的"perf"工具使用.
Debug: use vmalloc to back perf mmap() buffers
CONFIG_DEBUG_PERF_USE_VMALLOC
主要用于调试vmalloc代码.
Enable VM event counters for /proc/vmstat
CONFIG_VM_EVENT_COUNTERS
" /proc/vmstat"中包含了从内核导出的虚拟内存的各种统计信息.开启此项后可以显示较详细的信息(包含各种事件计数器),关闭此项则仅仅显示很简略的信息.主要用于调试和统计.
Enable SLUB debugging support
CONFIG_SLUB_DEBUG
SLUB调试支持,禁用后可显著降低内核大小,同时/sys/kernel/slab也将不复存在.
Disable heap randomization
CONFIG_COMPAT_BRK
禁用堆随机化(heap randomization)功能.堆随机化可以让针对堆溢出的攻击变得困难,但是不兼容那些古董级的二进制程序(2000年以前).如果你不需要使用这些古董程序,那么选"N".
Choose SLAB allocator
选择内存分配管理器
SLAB
CONFIG_SLAB
久经考验的slab内存分配器,在大多数情况下都具有良好的适应性.
SLUB (Unqueued Allocator)
CONFIG_SLUB
SLUB与SLAB兼容,但通过取消大量的队列和相关开销,简化了slab的结构.特别是在多核时拥有比slab更好的性能和更好的系统可伸缩性.
SLOB (Simple Allocator)
CONFIG_SLOB
SLOB针对小型系统设计,做了非常激进的简化,以适用于内存非常有限(小于64M)的嵌入式环境.
Profiling support
CONFIG_PROFILING
添加扩展的性能分析支持,可以被 OProfile之类的工具使用.仅用于调试目的.
OProfile system profiling
CONFIG_OPROFILE
OProfile性能分析工具支持,仅用于调试目的.
OProfile multiplexing support
CONFIG_OPROFILE_EVENT_MULTIPLEX
OProfile multiplexing技术支持
Kprobes
CONFIG_KPROBES
Kprobes是一个轻量级的内核调试工具,能在内核运行的几乎任意时间点进行暂停/读取/修改等操作的调试工具.仅供调试使用.
Optimize very unlikely/likely branches
CONFIG_JUMP_LABEL
针对内核中某些"几乎总是为真"或者"几乎总是为假"的条件分支判断使用 "asm goto"进行优化(在分支预测失败时会浪费很多时间在回退上,但是这种情况极少发生).很多内核子系统都支持进行这种优化.建议开启.
Transparent user-space probes
CONFIG_UPROBES
Uprobes与Kprobes类似,但主要用于用户空间的调试.
Enable GCOV-based kernel profiling
CONFIG_GCOV_KERNEL
基于 GCC的gcov( 代码覆盖率测试工具)的 代码分析支持,仅用于调试
Profile entire Kernel
CONFIG_GCOV_PROFILE_ALL
支持对整个内核进行分析.内核体积将会显著增大,并且运行速度显著减慢.

Enable loadable module support
可加载模块支持

Enable loadable module support
CONFIG_MODULES
打开可加载模块支持,可以通过"make modules_install"把内核模块安装在/lib/modules/中.然后可以使用 modprobe, lsmod, modinfo, insmod, rmmod 等工具进行各种模块操作.
Forced module loading
CONFIG_MODULE_FORCE_LOAD
允许使用"modprobe --force"在不校验版本信息的情况下强制加载模块,这绝对是个坏主意!建议关闭.
Module unloading
CONFIG_MODULE_UNLOAD
允许卸载已经加载的模块
Forced module unloading
CONFIG_MODULE_FORCE_UNLOAD
允许强制卸载正在使用中的模块(rmmod -f),即使可能会造成系统崩溃.这又是一个坏主意!建议关闭.
Module versioning support
CONFIG_MODVERSIONS
允许使用为其他内核版本编译的模块,可会造成系统崩溃.这同样是个坏主意!建议关闭.
Source checksum for all modules
CONFIG_MODULE_SRCVERSION_ALL
为模块添加"srcversion"字段,以帮助模块维护者准确的知道编译此模块所需要的源文件,从而可以校验源文件的变动.仅内核模块开发者需要它.
Module signature verification
CONFIG_MODULE_SIG
加载模块时检查 模块签名,详情参见" Documentation/module-signing.txt"文件.[!!警告!!]开启此选项后,必须确保模块签名后没有被strip(包括rpmbuild之类的打包工具).
Require modules to be validly signed
CONFIG_MODULE_SIG_FORCE
仅加载已签名并且密钥正确的模块,拒绝加载未签名或者签名密钥不正确的模块
Automatically sign all modules
CONFIG_MODULE_SIG_ALL
在执行"make modules_install"安装模块的时候,自动进行签名.否则你必须手动使用 scripts/sign-file 工具进行签名.
Which hash algorithm should modules be signed with?
选择对模块签名时使用的散列函数.建议使用强度最高的"SHA-512"算法.注意:所依赖的散列算法必须被静态编译进内核.对于"SHA-512"来说,就是CONFIG_CRYPTO_SHA512和CONFIG_CRYPTO_SHA512_SSSE3(如果你的CPU支持SSSE3指令集的话).

Enable the block layer
块设备支持

Enable the block layer
CONFIG_BLOCK
块设备支持,使用SSD/硬盘/U盘/SCSI/SAS设备者必选.除非你是某些特殊的嵌入式系统,否则没有理由不使用块设备.
Block layer SG support v4
CONFIG_BLK_DEV_BSG
为块设备启用第四版 SG(SCSI generic)支持.v4相比v3能够支持更复杂的SCSI指令(可变长度的命令描述块,双向数据传输,通用请求/应答协议),而且UDEV也要用它来获取设备的序列号.对于使用systemd的系统来说,必须选"Y".对于不使用systemd的系统,如果你需要通过/dev/bsg/*访问块设备,建议开启此选项,否则(通过/dev/{sd*,st*,sr*})可以关闭.
Block layer SG support v4 helper lib
CONFIG_BLK_DEV_BSGLIB
你不需要手动开启此选项,如果有其他模块需要使用,会被自动开启.
Block layer data integrity support
CONFIG_BLK_DEV_INTEGRITY
某些块设备可以通过存储/读取额外的信息来保障 端到端的数据完整性,这个选项为文件系统提供了相应的钩子函数来使用这个特性.如果你的设备支持  T10/SCSI Data Integrity Field 或者 T13/ATA External Path Protection 特性,那么可以开启此选项,否则建议关闭.
Block layer bio throttling support
CONFIG_BLK_DEV_THROTTLING
Bio Throttling 支持,也就是允许限制每个cgroup对特定设备的IO速率.细节可以参考" Documentation/cgroups/blkio-controller.txt".
Advanced partition selection
CONFIG_PARTITION_ADVANCED
如果你想支持各种不同的磁盘分区格式(特别是与UEFI配合使用的 GPT格式),务必选中此项.
Acorn partition support
CONFIG_ACORN_PARTITION
Acorn 操作系统使用的分区格式,请根据实际情况选择子项,这里省略
Alpha OSF partition support
CONFIG_OSF_PARTITION
Alpha 平台上使用的分区格式
Amiga partition table support
CONFIG_AMIGA_PARTITION
AmigaOS 使用的分区格式
Atari partition table support
CONFIG_ATARI_PARTITION
Atari OS 使用的分区格式
Macintosh partition map support
CONFIG_MAC_PARTITION
苹果的Macintosh平台使用的分区格式
PC BIOS (MSDOS partition tables) support
CONFIG_MSDOS_PARTITION
渐成历史垃圾,但目前依然最常见的DOS分区格式.除非你确信不使用此格式,否则必选.其下的子项根据实际情况选择.
Windows Logical Disk Manager (Dynamic Disk) support
CONFIG_LDM_PARTITION
使用 Windows Logical Disk Manager 创建的分区格式.参见" Documentation/ldm.txt"
SGI partition support
CONFIG_SGI_PARTITION
SGI 平台上使用的分区格式
Ultrix partition table support
CONFIG_ULTRIX_PARTITION
DEC/Compaq Ultrix 平台上使用的分区格式
Sun partition tables support
CONFIG_SUN_PARTITION
SunOS 平台上使用的分区格式
Karma Partition support
CONFIG_KARMA_PARTITION
Rio Karma MP3 player 使用的分区格式
EFI GUID Partition support
CONFIG_EFI_PARTITION
代表未来趋势,眼下正大红大紫的EFI  GPT( GUID Partition Table)分区格式.建议开启.如果你在UEFI平台上安装则必须开启.
SYSV68 partition table support
CONFIG_SYSV68_PARTITION
Motorola Delta 机器上使用的分区格式
IO Schedulers
IO调度器( 另一篇文章)
Deadline I/O scheduler
CONFIG_IOSCHED_DEADLINE
deadline调度器.简洁小巧(只有400+行代码),提供了最小的读取延迟.如果你希望尽快读取磁盘,而不介意写入延迟,那它是最佳选择.通常对于数据库工作负载有最佳的表现.
CFQ I/O scheduler
CONFIG_IOSCHED_CFQ
cfq( Complete Fair Queuing)调度器.努力在各内核线程间公平分配IO资源,适用于系统中存在着大量内核线程同时进行IO请求的情况.但对于只有少数内核线程进行密集IO请求的情况,则会出现明显的性能下降.
CFQ Group Scheduling support
CONFIG_CFQ_GROUP_IOSCHED
允许将CFQ和cgroup组合使用,也就是将每个cgroup看成一个整体,在各cgroup之间进行IO资源的分配.参见" Documentation/cgroups/blkio-controller.txt"文件.还可以参考一下《Linux内核精髓》中的" 使用Block I/O控制器"一章.
BFQ I/O scheduler
CONFIG_IOSCHED_BFQ
bfq(Budget Fair Queueing)调度器.这是一个基于CFQ调度器的改进版本,更适合于对交互性要求比较高的场合,比如桌面系统和实时系统.如果静态编译进内核,还支持和cgroup配合,实现分层调度(hierarchical scheduling).
BFQ hierarchical scheduling support
CONFIG_CGROUP_BFQIO
通过cgroup文件系统接口,允许将BFQ分层使用(类似CONFIG_CFQ_GROUP_IOSCHED),这个子系统的名字是"bfqio".
Default I/O scheduler
默认IO调度器.如果上述调度器都是模块,那么将使用最简单的内置NOOP调度器. NOOP(No Operation)调度器只是一个简单的FIFO队列,不对IO请求做任何重新排序处理(但还是会做一定程度的归并),适合于SSD/U盘/内存/SAN(Storage Area Networks)/虚拟机中的硬盘/iSCSI/硬RAID等无需寻道的存储设备,重点是可以节约CPU资源,但不适用于普通硬盘这样的需要依靠磁头来定位的设备.另外,有人说拥有 TCQ/ NCQ技术(能够自动重新排序)的硬盘也适合用NOOP调度器,这个说法其实并不那么合理,但笔者在此不敢断言,希望读者在严谨的测试之后再做定夺.

Processor type and features
中央处理器(CPU)类型及特性

DMA memory allocation support
CONFIG_ZONE_DMA
允许为寻址宽度不足32位的设备(也就是ISA和 LPC总线设备)在 物理内存的前16MB范围内(也就是传统上x86_32架构的 ZONE_DMA区域)分配内存.不确定的选"Y".[提示]LPC总线通常和主板上的南桥物理相连,通常连接了一系列的传统设备:BIOS,PS/2键盘,PS/2鼠标,软盘,并口设备,串口设备,某些集成声卡,TPM(可信平台模块),等等.[题外话] x86_64已经没有ZONE_HIGHMEM了
Symmetric multi-processing support
CONFIG_SMP
SMP(对称多处理器)支持,如果你有多个CPU或者使用的是多核CPU就选上.
Support x2apic
CONFIG_X86_X2APIC
x2apic支持.具有这个特性的CPU可以使用32位的APIC ID(可以支持海量的CPU),并且可以使用MSR而不是mmio去访问 local APIC (更加高效).可以通过"grep x2apic /proc/cpuinfo"命令检查你的CPU是否支持这个特性.注意:有时候还需要在BIOS中也开启此特性才真正生效.[提示]在虚拟机中,还需要VMM的支持(例如qemu-kvm).
Enable MPS table
CONFIG_X86_MPPARSE
如果是不支持acpi特性的古董级SMP系统就选上.但现今的64位系统早都已经支持acpi了,所以可以安全的关闭.
Support for extended (non-PC) x86 platforms
CONFIG_X86_EXTENDED_PLATFORM
支持非标准的PC平台: Numascale NumaChip, ScaleMP vSMP, SGI Ultraviolet. 绝大多数人都遇不见这些平台.
Numascale NumaChip
CONFIG_X86_NUMACHIP
Numascale NumaChip 平台支持
ScaleMP vSMP
CONFIG_X86_VSMP
ScaleMP vSMP 平台支持
SGI Ultraviolet
CONFIG_X86_UV
SGI Ultraviolet 平台支持
Intel Low Power Subsystem Support
CONFIG_X86_INTEL_LPSS
为 Intel  Lynx Point  PCH 中的 Intel Low Power Subsystem 技术提供支持.这个芯片组主要是为采用LGA1150的 Haswell处理器提供支持.
Single-depth WCHAN output
CONFIG_SCHED_OMIT_FRAME_POINTER
使用简化的 /proc//wchan 值,禁用此选项会使用更加精确的wchan值(可以在"ps -l"结果的WCHAN域看到),但会轻微增加调度器消耗.
Linux guest support
CONFIG_HYPERVISOR_GUEST
如果这个内核将在 虚拟机里面运行就开启,否则就关闭.
Enable paravirtualization code
CONFIG_PARAVIRT
半虚拟化(paravirtualization)支持.
paravirt-ops debugging
CONFIG_PARAVIRT_DEBUG
仅供调试. paravirt-ops是内核通用的半虚拟化接口.
Paravirtualization layer for spinlocks
CONFIG_PARAVIRT_SPINLOCKS
半虚拟化的自旋锁支持.开启之后运行在虚拟机里的内核速度会加快,但是运行在物理CPU上的宿主内核运行效率会降低(最多可能会降低5%).请根据实际情况选择.
Xen guest support
CONFIG_XEN
Xen半虚拟化技术支持
Enable Xen debug and tuning parameters in debugfs
CONFIG_XEN_DEBUG_FS
为Xen在debugfs中输出各种统计信息和调整选项.对性能有严重影响.仅供调试.
KVM Guest support (including kvmclock)
CONFIG_KVM_GUEST
KVM客户机支持(包括 kvmclock).
Paravirtual steal time accounting
CONFIG_PARAVIRT_TIME_ACCOUNTING
允许进行更细粒度的 task steal time 统计.会造成性能的略微降低.仅在你确实需要的时候才开启.
Memtest
CONFIG_MEMTEST
为内核添加 内存测试功能,也就是添加"memtest"内核引导参数以支持对内存进行"体检".仅在你确实知道这是什么东西并且确实需要的时候再开启.否则请关闭.
Processor family
处理器系列,请按照你实际使用的CPU选择."Generic-x86-64"表示通用于所有x86-64平台,不针对特定类型的CPU进行优化.
Supported processor vendors
CONFIG_PROCESSOR_SELECT
支持的CPU厂商,按实际情况选择.
Enable DMI scanning
CONFIG_DMI
允许扫描 DMI( Desktop Management Interface)/ SMBIOS( System Management BIOS)以 获得机器的硬件配置,从而对已知的bug bios进行规避.具体涉及到哪些机器可参见"drivers/acpi/blacklist.c"文件.除非确定你的机器没有bug,否则请开启此项.
GART IOMMU support
CONFIG_GART_IOMMU
GART  IOMMU 支持. 图形地址重映射表( Graphics Address Remapping Table)可以将物理地址不连续的系统内存映射成看上去连续的图形内存交给GPU使用,是一种挖CPU内存补GPU内存机制,这种机制也可以被认为是一种"伪IOMMU"(缺乏地址空间隔离和访问控制).开启此选项以后,在内存大于3G的系统上,传统的32位总线(PCI/AGP)的设备将可以使用完全 DMA的方式直接访问原本超出32位寻址范围之外的系统内存区域.具体方法是:通过编程让设备在受GART控制的显存区域工作,然后使用GART将这个地址映射为真实的物理地址(4GB以上)来实现的.USB/声卡/IDE/SATA之类的设备常常需要它.开启此选项之后,除非同时开启了CONFIG_IOMMU_DEBUG选项或者使用了"iommu=force"内核引导参数,否则此特性仅在条件满足的情况下(内存足够大且确有支持GART的设备)激活.建议内存大于3G的系统上选"Y".
IBM Calgary IOMMU support
CONFIG_CALGARY_IOMMU
IBM xSeries/pSeries 系列服务器的  Calgary IOMMU 支持.
Should Calgary be enabled by default?
CONFIG_CALGARY_IOMMU_ENABLED_BY_DEFAULT
开启此选项表示默认启用Calgary特性,关闭此选项表示默认禁用Calgary特性(可以使用"iommu=calgary"内核引导参数开启).
Enable Maximum number of SMP Processors and NUMA Nodes
CONFIG_MAXSMP
让内核支持x86_64平台所能支持的最大SMP处理器数量和最大NUMA节点数量.主要用于调试目的.
Maximum number of CPUs
CONFIG_NR_CPUS
支持的最大CPU数量,每个CPU要占8KB的内核镜像,最小有效值是"2",最大有效值是"512".注意:对于多核CPU而言,每个核算一个.
SMT (Hyperthreading) scheduler support
CONFIG_SCHED_SMT
Intel超线程技术( HyperThreading)支持.
Multi-core scheduler support
CONFIG_SCHED_MC
针对多核CPU进行调度策略优化
Preemption Model
内核抢占模式
No Forced Preemption (Server)
CONFIG_PREEMPT_NONE
禁止内核抢占,这是Linux的传统模式,可以得到最大的吞吐量,适合服务器和科学计算环境
Voluntary Kernel Preemption (Desktop)
CONFIG_PREEMPT_VOLUNTARY
自愿内核抢占,通过在内核中设置明确的抢占点以允许明确的内核抢占,可以提高响应速度,但是对吞吐量有不利影响.适合普通桌面环境的
Preemptible Kernel (Low-Latency Desktop)
CONFIG_PREEMPT
主动内核抢占,允许抢占所有内核代码,对吞吐量有更大影响,适合需要运行实时程序的场合或者追求最快响应速度的桌面环境.
Reroute for broken boot IRQs
CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS
这是一个对某些 芯片组bug(在某些情况下会发送多余的" boot IRQ")的修复功能.开启此选项之后,仅对有此bug的芯片组生效.要检查哪些芯片组有此bug可以查看" 元器件数据手册、IC替代型号,打造电子元器件IC百科大全!

相关文章