锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

电路设计常识必备的知识

时间:2022-08-11 03:30:00 d1703贴片场效三极管m18电容接近开关二极管34a瞬变抑制二极管sapnp硅af晶体管阵列4n60g场效应三极管

电阻
电阻在电路中使用R加数表示:R1表示编号为1的电阻.电阻在电路中的主要作用是
分流、限流、分压、偏置等.
1.参数识别:电阻单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等.换算
方法是:1兆欧=1000千欧=1000000欧
有三种方法可以标记电阻的参数,即直标法、色标法和数标法.
a、数标法主要用于贴片等小体积电路,如:
472 表示 47×100Ω(即4.7K); 104则表示100K
b、最常用的色环标注法如下:
四色环电阻 五色环电阻(精密电阻)
电阻的色标位置与倍率关系如下表所示:
颜色 有效数字 倍率 允许偏差(%)
银色 / x0.01 ±10
金色 / x0.1 ±5
黑色 0 0 /
棕色 1 x10 ±1
红色 2 x100 ±2
橙色 3 x1000 /
黄色 4 x10000 /
绿色 5 x100000 ±0.5
蓝色 6 x1000000 ±0.2
紫色 7 x10000000 ±0.1
灰色 8 x100000000 /
白色 9 x1000000000 /
电容
电容一般用于电路中。C加数字表示(如C13表示编号为13的电容).电容器是由两个金属膜紧密相连,中间用绝缘材料隔开的部件.电容的特性 主要是隔直流通交流.电容量的大小意味着储存电能的大小,电容对交与交流信号的频率和电容量有关的流信号阻碍称为容抗.容抗XC= 1/2πf c (f表示交流信号的频率,C表示电容量) 电话中常用的电容有电解电容、瓷片电容、贴片电容、独石电容、钽电容、聚酯电容等.
2.识别方法:电容的识别方法与电阻的识别方法基本相同,分为直标法、色标法和数标法.法拉电容的基本单位使用法拉(F)其他单位还有:毫法 (mF)、微法(uF)、纳法(nF)、皮法(pF).其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容的容量值直接在电容上 接标明,如10 uF/16V小容量电容的容量值用字母或数字表示:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法容量大小一般用三位数表示,前两位表示有效数字,第三位数是倍率.如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF
3.电容误差
例如,瓷片电容为104J表示容量为0. 1 uF、误差为±5%.
晶体二极管
晶体二极管常用于电路中。D加数表示: D5表示编号为5的二极管.
1、 功能:二极管的主要特点是单向导电,即在正向电压下,导电阻很小;在反向电压下,导电阻很大或无限.正因为二极管具有上述特性,无 绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中.电话中使用的晶体二极管可分为:整流二极管(如1)N4004)N肖特基二极管(如4148)BAT85)、发光二极管、稳压二极管等.
2.识别方法:二极管的识别非常简单。小功率二极管的N极(负极)大多用一个色圈标记在二极管的外观上,一些二极管也用二极管的特殊符号表示P极 (正极)或N极(负极)也有符号标志为P”、”N确定二极管极性.发光二极管的正负极可以从引脚长度来识别,长脚为正,短脚为负.
3.测试注意事项:用数字万用表测量二极管时,红表笔接二极管正极管,黑表笔接二极管的负极,此时测得的电阻值为二极管的正导电阻值,与指针万用表的表笔接法正好相反.
稳压二极管
电路中常用稳压二极管。ZD加数表示:ZD5表示5号稳压管.
1.稳压二极管的稳压原理:稳压二极管的特点是击穿后两端电压基本保持不变.这样,当稳压管连接到电路时,如果电源电压波动或其他原因导致电路中的点电压变化,负载两端的电压基本保持不变.
2.故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定.在这三个故障中,前一个故障显示电源电压升高;后两个故障显示电源电压降至零伏或输出不稳定.
稳压二极管常用型号及稳压值如下表所示:
型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761
稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V
电感
电感在电路中常用L加数表示:L6号是6号 电感.电感线圈是绝对的边缘的导线在绝缘骨架上绕一定的圈数制成.直流可以通过线圈,直流电阻是导线本身的电阻,压降很小;当交流信号通过线圈时,线圈两端 自感电势会产生,自感电势的方向与外加电压的方向相反,阻碍交流通过。因此,电感的特点是通直流阻交流。频率越高,线圈阻抗越大.电路中可以与电感相匹配 振荡电路由电容组成.
电感一般有直标法和色标法,与电阻相似.比如棕、黑、金、金表示1uH电感(误差5%).
电感的基本单位是:亨(H) 换算单位有:1H=103mH=106uH.
变容二极管
变容二极管是基于普通二极管内部 “PN结” 结电容随反向电压的变化而变化
一种专门设计原理的特殊二极管.
变容二极管主要用于无绳电话中的高频调制电路,实现低频信号调制到高
并在频信号上发射.在工作状态下,变容二极管调制电压一般加到负极上,使变容器二极管
内部结电容量随调制电压的变化而变化.
变容二极管故障主要表现为漏电或性能差:
(1)漏电时,高频调制电路不工作或调制性能恶化.
(2)变容性能差时,高频调制电路工作不稳定,将调制后的高频信号发送给对方
方接收后失真.
出现上述情况之一时,应更换同型号的变容二极管.
晶体三极管
晶体三极管常用于电路中。Q”加数字表示,如:Q17表示编号为17的三极管.
1.特点:晶体三极管(以下简称三极管)含有两个PN具有放大能力的大能力.它分NPN型和PNP两种类型的三极管从工 在特征上可以相互弥补,所谓OTL电路中的对管是由的PNP型和NPN型配对使用.常用的电话PNP型三极管有:A92、9012、9015等型号; NPN型三极管有:A42、9014、9018、9013等型号.
2.晶体三极管主要用于晶体三极管放大电路中有三种放大方法.为便于比较,下表列出了三种晶体管连接电路的特点,供您参考.
名称 输入阻抗 输出阻抗 电压放大倍数 电流放大倍数
共发射极电路(数百欧欧欧欧欧欧欧欧)~几千欧)中(几千欧~大(几十千欧)
共集电极电路(射极输出器)大(几十千欧以上)小(几欧~小(小于1,接近1)大(几十)
共基极电路小(几欧~大(几十欧)~大小(小于1,接近1)
功率放大倍数 频率特性 应用
大(约30~40分贝) 高频差 中间级多级放大器,低频放大器
小(约10分贝)好 输入级、输出级或阻抗匹配
中(约15~20分贝)好 高频或宽频带电路和恒流源电路
晶体管放大器的场效应
1.场效应晶体管具有输入阻抗高、噪音低的优点,也广泛应用于各种电子设备中.特别是用场效管做整个电子设备输入级可获得一般晶体管难以实现的性能.
2、场效应管分为结型和绝缘栅两类,其控制原理相同.如图1-1-1是两种型号的表示符号:
3、场效应管与晶体管的比较:
(1)场效应管是电压控制元件,晶体管是电流控制元件.当只允许从信号源获得较少的电流时,应选择场效应管;当信号电压较低且允许从信号源获得较多电流时,应选择晶体管.
(2)场效应管采用多数载流子导电,称为单极装置,晶体管具有多数载流子和少数载流子.被称为双极装置.
(3)部分场效应管的源极和漏极可互换使用,栅压也可正负,灵活性优于晶体管.
(4)现场效应管可以在非常小的电流和非常低的电压下工作,其制造过程可以很容易地将许多现场效应管集成在硅片上,因此现场效应管很大广泛应用于大型集成电路中.
最常用的电子元件型号
整流二极管:
1N4001~1N4007 50V~1000~/1.0A 1N5391~1N5399 50V~1000V/1.5A 1N5400~1N5408 50V~1000V/3.0A
开关二极管:
1N4148 1N4150 1N4448
肖特基二极管:
1N5817~1N5819 20V~40V/1.0A 1N5820~1N5822 20V~40V/3.0A 1N60 1N60P低压降低小电流
光电耦合器:
4N35 4N36 4N37
晶体三极管:
PNP:8050 9015 A92
NPN:9012 9013 9014 9015 9018
D/A转换器:
AD7520 AD7521 AF7530 AD7521
8位:DAC0830 DAC0832 (D/A )12位:AD7541 (D/A)
8位:ADC0802 ADC0803 ADC0804 ADC0831 ADC0832 ADC0834 ADC0838(A/D)
跨导运算变压器
CA3080 CA3080A OTA
BiMOS操作变压器:
CA3140 CA3140A
DB3 双向触发二极管
二极管快速恢复:
FR101~FR107 50V~1000/1.0A
三位半A/D转换器:
ICL7106 ICL7107 ICL7116 ICL7117
载波稳零操作放大器:
ICL7650
CMOS电压变换器:
ICL7660/MAX1044
单片函数发生器:
ICL8038
通用计数器:
ICM7216 ICM7216B ICM7216D 10MHz
带BCD输出10MZ通用计数器:
ICM7226A ICM7226B
单/双通用定时器:
ICM7555 ICM7555
DTMF 收发器:
ISO2-CMOS MT8880C
JFET输入操作放大器:
LF351
FJET输入宽带高速双运算放大器:
LF353
三端可调电源:
LM117 LM317A LM317
功耗四运算放大器:
LM124 LM124 LM324 LM2920
三端可调负电压调整器:
LM137 LM337
低功耗四电压比较器:
LM139 LM239 LM339 LM2901 LM3302
可关断开关电源:
LM1575-3.3、LM2575-3.3、LM2575HV-3.3、LM1575- 5.0、LM2575-5.0、LM2575HV-5.0、LM1575-12、LM2575-12、 LM2575HV-12、LM1575-15, LM2575-15、LM2575HV-15、LM1575- ADJ、LM2575-ADJ LM2576-3.3、LM2576HV-3.3、LM2576-5.0、LM2576HV- 5.0、LM2576-12、LM2576HV-12、LM2576-15、LM2576HV-15、 LM2576-ADJ
低功耗双运算放大器:
LM158 LM258 LM358 LM2904
低功耗双电压比较器:
LM193 LM293 LM393 LM2903
通用运算放大器:
LM201 LM301 LM741
精密电压 频率转换器:
LM231A LM231 LM331A LM331
微功耗基准电压二极管:
LM285 LM358
精密运算放大器:
LM308A
低压音频小功率放大器:
LM386
带温度稳定器精密电压基准电路:
LM299 LM399 LM3999
可调电压基准电路:
LM431
锁相环音频译码器:
LM657 LM657C
双低噪声音频功率放大器:
LM831 LM833
双定时LED电子钟电路:
LM8365
单片函数发生器;
MAX038 0.1~20MZ
5V电源多通道RS232驱动器/接收器:
MAX232
七路达林顿驱动器:
MC1413 MC1416
编码器/译码器:
MC145026 MC145027 MC145028
MC145023-5/8 RS232驱动器:
MC145403 MC145404 MC145405 MC145408
RS232驱动器/接收器:
MC145406 MC145407
四施密特可控线路驱动器:
MC1489 MC1489A SN55189 SN55189A SN75189 SN75189A
低功率调频发射系统:
MC2833
低功率调频窄频带接收器:
MC3362
双运算放大器:
MC4558
MC7800系列 1.0A三端正电压稳压器:
MC7805(5.0V)、LM340-5(5.0V)、MC7806(6.0V)、MC7808 (8.0V)、MC7809(9.0V)、MC7812(12V)、LM340-12(12V)、 MC7815(15V)、LM340-15(15V)、MC7818(18V)、MC7824 (24V)
MC78L00系列 0.5A三端正电压稳压器:
MC78M05(5.0V)、MC78M06(6.0V)、MC78M08(8.0V)、MC78M09 (9.0V)、MC78M12(12V)、MC78M15(15V)、MC78M18(18V)、 MC78M20(20V)、MC78M24(24V)
MC78T00系列 3.0A正电压稳压器:
MC78T05(5.0V)、MC78T08(8.0V)、MC78T12(12V)、MC78T15 (15V)
MC7900系列 1.0三端负电压稳压器:
MC7905(5.0V)、MC7905.2(5.2V)、MC7906(6.0V)、MC7908 (8.0V)、MC7912(12V)、MC7915(15V)、MC7918(18V)、 MC7924(24V)
MC79L00系列 0.1A 三端负电压稳压器:
MC79L05(5.0V)、MC79L12(12V)、MC79L15(15V)、MC79L18 (18V)、MC79L24(24V)
MC79M00系列 0.5A 三端负电压稳压器:
MC79M05(5.0V)、MC79M08(8.0V)、MC79M12(12V)、MC79M15 (15V)
Microchip PIC 系列单片机RS232通讯应用:
3.579545MHZ–60HZ 17级分频振荡器:
MM5369
双向可控硅输出光电耦合器:
MOC3009 MOC3012 (250V) MOC3020 MOC3023 (400V)
DTMF双音频接收器:
MT8870C MT8870C-1
DTMF 收发器:
MT8888C
单时基电路:
NE555 NE555Y SA555 SE555
双时基电路:
NE556 SA556 SE556
音频压缩扩展器:
NE570 NE571 SA571
低电压飘移运算放大器:
OP07 OP77
低噪音精密运算放大器:
OP27
低噪音高精密运算放大器:
OP37
精密低电压微功耗运算放大器:
OP90
高效光电耦合器:
PC817 PC827 PC837 PC847
无线遥控发射编码器芯片:
PT2262
无线遥控接收解码器芯片:
PT2272
脉宽市制PWM:
SG2524 SG3524
电力线调制解诘器电路:
ST7537
音频功率放大器:
TDA1521/TDA1521Q 2×12W Hi-Fi
TDA2030 14W Hi-fi
TDA2616/TDA2616Q 2×12W Hi-Fi
FM 单片调频接收电路:
TDA7000T TDA7010T
FM MTS 单片调节器频接收电路:
TDA7021T
低电压锁相环立体解码器:
TDA7040T
低电压单/双声道功率放大器:
TDA7050
低功耗JFET输入运算放大器:
TL062 TL064
低噪声JFET输入运算放大器:
TL071 TL072 TL074
JFET输入宽带高速运算放大器:
TL081 TL082 TL084
脉宽调制PWM:
TL494
精密开关模式脉宽调制控制:
TL594
光电耦合器:
TLP521-1/TLP521-2/TLP521-4
PWM Switch:
TOP100/TOP101/TOP102/TOP103/TOP104 TOP200/TOP201/TOP202/TOP203/TOP204/TOP214 TOP209/TOP210
线性八外围驱动器阵列:
ULN2803 ULN2804
(八路NPN达林顿连接晶体管阵系列特别适用于低逻辑电平数字电路(诸如TTL, CMOS或PMOS/NMOS)和较高的电流/电压要求之间的接口,广泛应用于计算机,工业用和消费类产品中的灯、继电器、打印锤或其它类似负载中.所有器件具有集电极开路输出和续流箝位二极管,用于抑制跃变.ULN2803的设计与标准TTL系列兼容,而ULN2804 最适于6至15伏高电平CMOS或PMOS.
==============================================
二级管的分类及特性
一、根据构造分类
半导体二极管主要是依靠PN结而工作的.与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内.包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:
1、点接触型二极管
点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的.因此,其PN结的静电容量小,适用于高频电路.但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流.因为构造简单,所以价格便宜.对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型.
2、键型二极管
键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的.其特性介于点接触型二极管和合金型二极管之间.与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良.多作开关用,有时也被应用于检波和电源整流(不大于50mA).在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型.
3、合金型二极管
在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的.正向电压降小,适于大电流整流.因其PN结反向时静电容量大,所以不适于高频检波和高频整流.
4、扩散型二极管
在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结.因PN结正向电压降小,适用于大电流整流.最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型.
5、台面型二极管
PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉.其剩余的部分便呈现出台面形,因而得名.初期生产的台面型,是对半导体材料使用扩散法而制成的.因此,又把这种台面型称为扩散台面型.对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多.
6、平面型二极管
在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结.因此,不需要为调整PN结面积的药品腐蚀作用.由于半导体表面被制作得平整,故而得名.并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型.最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型.对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多.
7、合金扩散型二极管
它是合金型的一种.合金材料是容易被扩散的材料.把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布.此法适用于制造高灵敏度的变容二极管.
8、外延型二极管
用外延面长的过程制造PN结而形成的二极管.制造时需要非常高超的技术.因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管.
9、肖特基二极管
基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压.肖特基与PN结的整流作用原理有根本性的差异.其耐压程度只有40V左右.其特长是:开关速度非常快:反向恢复时间trr特别地短.因此,能制作开关二极和低压大电流整流二极管.
二、根据用途分类
1、检波用二极管
就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波.锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型.类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路.也有为调频检波专用的特性一致性好的两只二极管组合件.
2、整流用二极管
就原理而言,从输入交流中得到输出的直流是整流.以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流.面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X共22档.分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型.
3、限幅用二极管
大多数二极管能作为限幅使用.也有象保护仪表用和高频齐纳管那样的专用限幅二极管.为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管.也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体.
4、调制用二极管
通常指的是环形调制专用的二极管.就是正向特性一致性好的四个二极管的组合件.即使其它变容二极管也有调制用途,但它们通常是直接作为调频用.
5、混频用二极管
使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管.
6、放大用二极管
用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大.因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管.
7、开关用二极管
有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管.小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管.开关二极管的特长是开关速度快.而肖特基型二极管的开关时间特短,因而是理想的开关二极管.2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高.
8、变容二极管
用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管.日本厂商方面也有其它许多叫法.通过施加反向电压, 使其PN结的静电容量发生变化.因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途.通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大.结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作.
9、频率倍增用二极管
对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增.频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率.阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显著地短.如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波.
10、稳压二极管
是代替稳压电子二极管的产品.被制作成为硅的扩散型或合金型.是反向击穿特性曲线急骤变化的二极管.作为控制电压和标准电压使用而制作的.二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级.在功率方面,也有从200mW至100W以上的产品.工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型.
11、PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管.PIN中的I是”本征”意义的英文略语.当其工作频率超过100MHz时,由于少数载流子的存贮效应和”本征”层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变.在零偏置或直流反向偏置时,”本征”区的阻抗很高;在直流正向偏置时,由于载流子注入”本征”区,而使”本征”区呈现出低阻抗状态.因此,可以把PIN二极管作为可变阻抗元件使用.它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中.
12、 雪崩二极管 (Avalanche Diode)
它是在外加电压作用下可以产生高频振荡的晶体管.产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡.它常被应用于微波领域的振荡电路中.
13、江崎二极管 (Tunnel Diode)
它是以隧道效应电流为主要电流分量的晶体二极管.其基底材料是砷化镓和锗.其P型区的N型区是高掺杂的(即高浓度杂质的).隧道电流由这些简并态半导体的量子力学效应所产生.发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性.江崎二极管为双端子有源器件.其主要参数有峰谷电流比(IP/PV),其中,下标”P”代表”峰”;而下标”V”代表”谷”.江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中.
14、快速关断(阶跃恢复)二极管 (Step Recovary Diode)
它也是一种具有PN结的二极管.其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成”自助电场”.由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个”存贮时间”后才能降至最小值(反向饱和电流值).阶跃恢复二极管的”自助电场”缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量.利用这些谐波分量可设计出梳状频谱发生电路.快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中.
15、肖特基二极管 (Schottky Barrier Diode)
它是具有肖特基特性的”金属半导体结”的二极管.其正向起始电压较低.其金属层除材料外,还可以采用金、钼、镍、钛等材料.其半导体材料采用硅或砷化镓,多为N型半导体.这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多.由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件.其工作频率可达100GHz.并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管.
16、阻尼二极管
具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用.
17、瞬变电压抑制二极管
TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类.
18、双基极二极管(单结晶体管)
两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点.
19、发光二极管
用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光.工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光.
三、根据特性分类
点接触型二极管,按正向和反向特性分类如下.
1、一般用点接触型二极管
这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品.如:SD34、SD46、1N34A等等属于这一类.
2、高反向耐压点接触型二极管
是最大峰值反向电压和最大直流反向电压很高的产品.使用于高压电路的检波和整流.这种型号的二极管一般正向特性不太好或一般.在点接触型锗二极管中,有SD38、1N38A、OA81等等.这种锗材料二极管,其耐压受到限制.要求更高时有硅合金和扩散型.
3、高反向电阻点接触型二极管
正向电压特性和一般用二极管相同.虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高.使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管.
4、高传导点接触型二极管
它与高反向电阻型相反.其反向特性尽管很差,但使正向电阻变得足够小.对高传导点接触型二极管而言,有SD56、1N56A等等.对高传导键型二极管而言,能够得到更优良的特性.这类二极管,在负荷电阻特别低的情况下,整流效率较高.

锐单商城拥有海量元器件数据手册IC替代型号,打造电子元器件IC百科大全!

相关文章