锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

CVPR 2022 论文列表

时间:2023-06-01 09:37:00 flex弯曲传感器

CVPR2022 Papers (Papers/Codes/Demos)

https://github.com/gbstack/cvpr-2022-papers

分类目录:

1. 检测

2. 分割(Segmentation)

3. 图像处理(Image Processing)

4. 估计(Estimation)

5. 图像&视频检索/视频理解(Image&Video Retrieval/Video Understanding)

6. 人脸(Face)

7. 三维视觉(3)D Vision)

8. 目标跟踪(Object Tracking)

9. 医学影像(Medical Imaging)

10. 文本检测/识别(Text Detection/Recognition)

11. 遥感图像(Remote Sensing Image)

12. GAN/生成/对抗(GAN/Generative/Adversarial)

13. 图像生成/合成(Image Generation/Image Synthesis)

14. 场景图(Scene Graph

15. 视觉定位(Visual Localization)

16.视觉推理/视觉问答(Visual Reasoning/VQA)

17. 图像分类(Image Classification)

18. 神经网络结构设计(Neural Network Structure Design)

19. 模型压缩(Model Compression)

20. 模型训练/泛化(Model Training/Generalization)

21. 模型评估(Model Evaluation)

22. 数据处理(Data Processing)

23. 主动学习(Active Learning)

24. 小样本学习/零样本学习(Few-shot/Zero-shot Learning)

25. 持续学习(Continual Learning/Life-long Learning)

26. domain/自适应(Transfer Learning/Domain Adaptation)

27. 度量学习(Metric Learning)

28. 对比学习(Contrastive Learning)

29. 增量学习(Incremental Learning)

30. 强化学习(Reinforcement Learning)

31. 元学习(Meta Learning)

32. 多模态学习(Multi-Modal Learning)

33. 视觉预测(Vision-based Prediction)

34. 数据集(Dataset)

35. 机器人(Robotic)

36. 自监督学习/半监督学习




检测


2D目标检测(2D Object Detection)

Oriented RepPoints for Aerial Object Detection(向空中目标检测 RepPoints)(小目标检测)

paper | code



Confidence Propagation Cluster: Unleash Full Potential of Object Detectors(信心传播集群:释放物体探测器的所有潜力)

paper



Semantic-aligned Fusion Transformer for One-shot Object Detection(语义对齐融合转换器用于一次性目标检测)

paper



A Dual Weighting Label Assignment Scheme for Object Detection(目标检测双重加权
标签分配方案)

paper | code



MUM : Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection(混合图像块和 UnMix 用于半监督目标检测的特征块)

paper | code



SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object Detection(域自适应对象检测的语义完全图匹配)

paper | code



Accelerating DETR Convergence via Semantic-Aligned Matching(通过语义对齐加速 DETR 收敛)

paper | code



Focal and Global Knowledge Distillation for Detectors(蒸馏探测器的焦点和全球知识)

keywords: Object Detection,Knowledge Distillation

paper | code



Unknown-Aware Object Detection: Learning What You Don’t Know from Videos in the Wild(未知感知对象检测:从野外视频中学习你不知道的东西)

paper | code



Localization Distillation for Dense Object Detection(密集对象检测的定位蒸馏)

keywords: Bounding Box Regression, Localization Quality Estimation, Knowledge Distillation

paper | code


视频目标检测(Video Object Detection)

Unsupervised Activity Segmentation by Joint Representation Learning and Online Clustering(通过联合表示学习和在线聚类进行无监督活动分割)

paper


3D目标检测(3D object detection)

TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers(用于 3D 对象检测的稳健 LiDAR-Camera Fusion 与 Transformer)

paper | code



Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds(学习用于 3D LiDAR 点云的高效基于点的检测器)

paper | code



Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion(迈向具有深度完成的高质量 3D 检测)

paper



MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer(使用深度感知 Transformer 的单目 3D 对象检测)

paper | code



Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds(从点云进行 3D 对象检测的 Set-to-Set 方法)

paper | code



VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention

paper | code



MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D Object Detection(单目 3D 目标检测的联合语义和几何成本量)

paper | code



DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection(用于多模态 3D 目标检测的激光雷达
相机深度融合)

paper | code



Point Density-Aware Voxels for LiDAR 3D Object Detection(用于 LiDAR 3D 对象检测的点密度感知体素)

paper | code



Back to Reality: Weakly-supervised 3D Object Detection with Shape-guided Label Enhancement(带有形状引导标签增强的弱监督 3D 对象检测)

paper | code



Canonical Voting: Towards Robust Oriented Bounding Box Detection in 3D Scenes(在 3D 场景中实现稳健的定向边界框检测)

paper | code



A Versatile Multi-View Framework for LiDAR-based 3D Object Detection with Guidance from Panoptic Segmentation(在全景分割的指导下,用于基于 LiDAR 的 3D 对象检测的多功能多视图框架)

keywords: 3D Object Detection with Point-based Methods, 3D Object Detection with Grid-based Methods, Cluster-free 3D Panoptic Segmentation, CenterPoint 3D Object Detection

paper



Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving(自动驾驶中用于单目 3D 目标检测的伪立体)

keywords: Autonomous Driving, Monocular 3D Object Detection

paper | code


伪装目标检测(Camouflaged Object Detection)

Implicit Motion Handling for Video Camouflaged Object Detection(视频伪装对象检测的隐式运动处理)

paper



Zoom In and Out: A Mixed-scale Triplet Network for Camouflaged Object Detection(放大和缩小:用于伪装目标检测的混合尺度三元组网络)

paper | code


显著性目标检测(Saliency Object Detection)

Bi-directional Object-context Prioritization Learning for Saliency Ranking(显着性排名的双向对象上下文优先级学习)

paper | code



Democracy Does Matter: Comprehensive Feature Mining for Co-Salient Object Detection()

paper


关键点检测(Keypoint Detection)

UKPGAN: A General Self-Supervised Keypoint Detector(一个通用的自监督关键点检测器)

paper | code


车道线检测(Lane Detection)

CLRNet: Cross Layer Refinement Network for Lane Detection(用于车道检测的跨层细化网络)

paper



Rethinking Efficient Lane Detection via Curve Modeling(通过曲线建模重新思考高效车道检测)

keywords: Segmentation-based Lane Detection, Point Detection-based Lane Detection, Curve-based Lane Detection, autonomous driving

paper | code


边缘检测(Edge Detection)

EDTER: Edge Detection with Transformer(使用transformer的边缘检测)

paper | code


消失点检测(Vanishing Point Detection)

Deep vanishing point detection: Geometric priors make dataset variations vanish(深度消失点检测**:几何先验使数据集变化消失)**

paper | code


分割(Segmentation)


图像分割(Image Segmentation)

Learning What Not to Segment: A New Perspective on Few-Shot Segmentation(学习不分割的内容:关于小样本分割的新视角)

paper | code



CRIS: CLIP-Driven Referring Image Segmentation(CLIP 驱动的参考图像分割)

paper



Hyperbolic Image Segmentation(双曲线图像分割)

paper


全景分割(Panoptic Segmentation)

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers(使用 Transformers 深入研究全景分割)

paper | code



Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation(弯曲现实:适应全景语义分割的失真感知Transformer)

keywords: Semanticand panoramic segmentation, Unsupervised domain adaptation, Transformer

paper | code


语义分割(Semantic Segmentation)

Class-Balanced Pixel-Level Self-Labeling for Domain Adaptive Semantic Segmentation(用于域自适应语义分割的类平衡像素级自标记)

paper | code



Regional Semantic Contrast and Aggregation for Weakly Supervised Semantic Segmentation(弱监督语义分割的区域语义对比和聚合)

paper | code



Tree Energy Loss: Towards Sparsely Annotated Semantic Segmentation(走向稀疏注释的语义分割)

paper | code



Scribble-Supervised LiDAR Semantic Segmentation

paper | code



ADAS: A Direct Adaptation Strategy for Multi-Target Domain Adaptive Semantic Segmentation(多目标域自适应语义分割的直接适应策略)

paper



Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast(通过像素到原型对比的弱监督语义分割)

paper



Representation Compensation Networks for Continual Semantic Segmentation(连续语义分割的表示补偿网络)

paper | code



Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels(使用不可靠伪标签的半监督语义分割)

paper | code



Weakly Supervised Semantic Segmentation using Out-of-Distribution Data(使用分布外数据的弱监督语义分割)

paper | code



Self-supervised Image-specific Prototype Exploration for Weakly Supervised Semantic Segmentation(弱监督语义分割的自监督图像特定原型探索)

paper | code



Multi-class Token Transformer for Weakly Supervised Semantic Segmentation(用于弱监督语义分割的多类token Transformer)

paper | code



Cross Language Image Matching for Weakly Supervised Semantic Segmentation(用于弱监督语义分割的跨语言图像匹配)

paper



Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers(从注意力中学习亲和力:使用 Transformers 的端到端弱监督语义分割)

paper | code



ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation(让自我训练更好地用于半监督语义分割)

keywords: Semi-supervised learning, Semantic segmentation, Uncertainty estimation

paper | code



Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation(弱监督语义分割的类重新激活图)

paper | code


实例分割(Instance Segmentation)

ContrastMask: Contrastive Learning to Segment Every Thing(对比学习分割每件事)

paper



Discovering Objects that Can Move(发现可以移动的物体)

paper | code



E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation(一种基于端到端轮廓的高质量高速实例分割方法)

paper | code



Efficient Video Instance Segmentation via Tracklet Query and Proposal(通过 Tracklet Query 和 Proposal 进行高效的视频实例分割)

paper



SoftGroup for 3D Instance Segmentation on Point Clouds(用于点云上的 3D 实例分割)

keywords: 3D Vision, Point Clouds, Instance Segmentation

paper | code


视频目标分割(Video Object Segmentation)

Language as Queries for Referring Video Object Segmentation(语言作为引用视频对象分割的查询)

paper | code


密集预测(Dense Prediction)

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting(具有上下文感知提示的语言引导密集预测)

paper | code


视频处理(Video Processing)


视频处理(Video Processing)

Neural Compression-Based Feature Learning for Video Restoration(用于视频复原的基于神经压缩的特征学习)

paper


视频编辑(Video Editing)

M3L: Language-based Video Editing via Multi-Modal Multi-Level Transformers(M3L:通过多模式多级transformer进行基于语言的视频编辑)

paper


视频生成/视频合成(Video Generation/Video Synthesis)

Depth-Aware Generative Adversarial Network for Talking Head Video Generation(用于说话头视频生成的深度感知生成对抗网络)

paper | code



Show Me What and Tell Me How: Video Synthesis via Multimodal Conditioning(告诉我什么并告诉我如何:通过多模式调节进行视频合成)

paper | code


估计(Estimation)


光流/运动估计(Optical Flow/Motion Estimation)

Global Matching with Overlapping Attention for Optical Flow Estimation(具有重叠注意力的全局匹配光流估计)

paper | code



CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation(用于联合光流和场景流估计的双向相机-LiDAR 融合)

paper


深度估计(Depth Estimation)

Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation(基于自适应相关的级联循环网络的实用立体匹配)

paper



Depth Estimation by Combining Binocular Stereo and Monocular Structured-Light(结合双目立体和单目结构光的深度估计)

paper | code



RGB-Depth Fusion GAN for Indoor Depth Completion(用于室内深度完成的 RGB 深度融合 GAN)

paper



Revisiting Domain Generalized Stereo Matching Networks from a Feature Consistency Perspective(从特征一致性的角度重新审视域广义立体匹配网络)

paper



Deep Depth from Focus with Differential Focus Volume(具有不同焦点体积的焦点深度)

paper



ChiTransformer:Towards Reliable Stereo from Cues(从线索走向可靠的立体声)

paper



Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation and Focal Loss(重新思考多视图立体的深度估计:统一表示和焦点损失)

paper | code



ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance and Domain Generalization in Stereo Matching Networks(立体匹配网络中自动避免捷径和域泛化的信息论方法)

keywords: Learning-based Stereo Matching Networks, Single Domain Generalization, Shortcut Learning

paper



Attention Concatenation Volume for Accurate and Efficient Stereo Matching(用于精确和高效立体匹配的注意力连接体积)

keywords: Stereo Matching, cost volume construction, cost aggregation

paper | code



Occlusion-Aware Cost Constructor for Light Field Depth Estimation(光场深度估计的遮挡感知成本构造函数)

paper | [code](https://github.com/YingqianWang/OACC- Net)



NeW CRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation(用于单目深度估计的神经窗口全连接 CRF)

keywords: Neural CRFs for Monocular Depth

paper



OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion(通过几何感知融合进行 360 度单目深度估计)

keywords: monocular depth estimation(单目深度估计),transformer

paper


人体解析/人体姿态估计(Human Parsing/Human Pose Estimation)

Ray3D: ray-based 3D human pose estimation for monocular absolute 3D localization(用于单目绝对 3D 定位的基于射线的 3D 人体姿态估计)

paper | code



Capturing Humans in Motion: Temporal-Attentive 3D Human Pose and Shape Estimation from Monocular Video(捕捉运动中的人类:来自单目视频的时间注意 3D 人体姿势和形状估计)

paper



Physical Inertial Poser (PIP): Physics-aware Real-time Human Motion Tracking from Sparse Inertial Sensors(来自稀疏惯性
传感器的物理感知实时人体运动跟踪)

paper



Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation(用于多人 3D 姿势估计的分布感知单阶段模型)

paper



MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation(用于 3D 人体姿势估计的多假设transformer)

paper | code



CDGNet: Class Distribution Guided Network for Human Parsing(用于人类解析的类分布引导网络)

paper



Forecasting Characteristic 3D Poses of Human Actions(预测人类行为的特征 3D 姿势)

paper



Learning Local-Global Contextual Adaptation for Multi-Person Pose Estimation(学习用于多人姿势估计的局部-全局上下文适应)

keywords: Top-Down Pose Estimation(从上至下姿态估计), Limb-based Grouping, Direct Regression

paper



MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video(用于视频中 3D 人体姿势估计的 Seq2seq 混合时空编码器)

paper


图像处理(Image Processing)


超分辨率(Super Resolution)

相关文章