锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

【CV】用于图像恢复的深度学习方法综述论文(2022年)

时间:2023-05-08 09:07:00 新型图像传感器原理

论文名称:A survey of deep learning approaches to image restoration
论文下载:https://www.sciencedirect.com/science/article/pii/S0925231222002089?via=ihub
论文年份:2022年
论文引用:(2022/04/27)

Abstract

In this paper,we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques,led by convolutional neural networks,have received a great deal of attention in almost all areas of image processing,especially in image classification. However,image restoration is a fundamental and challenging topic and plays significant roles in image processing,understanding and representation. It typically addresses image deblurring,denoising,dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively,while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper,we offer a comparative study of deep learning techniques in image denoising,deblurring,dehazing,and super-resolution,and summarise the principles involved in these tasks from various supervised deep network architectures,residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis,we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally,we point out potential challenges and directions for future research.

研究意义

在本文中,我们广泛回顾了图像恢复任务的深度学习方法。几乎所有图像处理领域,特别是图像分类领域,都引起了广泛的关注。然而,图像恢复是一个基本而具有挑战性的主题,在图像处理、理解和表达中发挥着重要作用。

【图像恢复的细分研究方向】

它通常处理去模糊的图像(image deblurring)、去噪 (denoising)、去雾 (dehazing) 和超分辨率 (super-resolution)

图像恢复方法

深度学习图像恢复的方法和机制差异很大。

  • 基于判断学习的方法能有效处理学习恢复映射函数的问题。

  • 基于优化模型的方法可以在一定的学习约束下进一步提高性能。

本文工作

本文对图像去噪、去模糊、去雾、超分辨率等深度学习技术进行了比较研究,

  • 从各种任务中总结了这些任务所涉及的原则监督深度网络架构残差或跳过连接感受野自动编码器无监督机制。
  • 调查了图像质量标准(Image quality criteria),并评估了它们在图像恢复中的作用。
  • 基于我们的分析,我们进一步提出了一个有效去模糊网络和几个用超分辨率恢复任务的多目标训练函数

研究结果

广泛比较了最新的定量和定性分析方法。最后,我们指出了未来研究的潜在挑战和方向。

1. Introduction

自上个世纪以来,图像恢复一直是数字图像处理的长期研究课题[1-5],近年来仍然是一个活跃的课题。图像恢复这是一个典型的逆问题,旨在从退化观察中恢复潜在的清洁图像。多维退化观察 (multidimensional
degraded observations) 和恢复图像之间的无限可能映射决定了这一点逆问题 (inverse problems) 不适定性 (illposed nature)<

相关文章