单片机初学者电路常识
时间:2023-04-24 12:07:01
电路常识性概念(1)-输入、输出阻抗
1、输入阻抗 输入阻抗是指电路输入端的等效阻抗。在输入端添加电压源U,测量输入端的电流I,则输入阻抗Rin=U/I。您可以将输入端想象成电阻的两端,即输入阻抗。 输入阻抗与普通电抗元件没有什么不同,它反映了电流阻碍的大小。 对于电压驱动输入阻抗越大,电压源负载越轻,驱动越容易,对信号源没有影响;而对于电流驱动型输入阻抗越小,电流源负载越轻。因此,我们可以这样想:如果由电压源驱动,输入阻抗越大越好;如果由电流源驱动,阻抗越小越好(注:只适用于低频电路。在高频电路中,应考虑阻抗匹配。此外,如果要获得最大输出功率,还应考虑阻抗匹配。) 2、输出阻抗 信号源、放大器和电源都存在输出阻抗问题。输出阻抗是信号源的内阻。本来,对于一个理想的电压源(包括电源)内阻应为0,或理想电流源阻抗应该是无限的。电路设计中应特别注意输出阻抗。
3、阻抗匹配 阻抗匹配是指信号源或传输线跟负载合适的搭配方式。 阻抗匹配分为低频和高频讨论。 我们从直流电压源驱动负载开始。由于实际电压源总是有内阻,我们可以将实际电压源等同于理想的电压源和电阻r串联模型。假设负载电阻为R,电势为U,内阻为r,然后我们可以计算出流电阻R的电流为:I=U/(R r),可以看出,负载电阻R输出电流越小,输出电流越大。负载R上部电压为:Uo=IR=U/[1 (r/R)],可以看出,负载电阻R输出电压越大Uo越高。再计算一下电阻R消耗的功率为: P=I2×R=[U/(R r)]2×R=U2×R/(R2 2×R×r r2) =U2×R/[(R-r)2 4×R×r] =U2/{ [(R-r)2/R] 4×r } 对于给定的信号源,其内阻r负载电阻是固定的R由我们选择。 注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]负载电阻可获得最小值0R最大输出功率Pmax=U2/(4×r)。即,当负载电阻等于信号源内阻时,负载可以获得最大输出功率,这就是我们常说的阻抗匹配之一。 这一结论也适用于低频电路和高频电路。当交流电路中含有容性或感性阻抗时,结论发生了变化(对于最大输出功率),实际上需要信号源等于负载阻抗,虚拟部分相反,这被称为共扼匹配。在低频电路中,我们通常不考虑传输线的匹配,只考虑信号源和负载之间的情况,因为低频信号的波长比传输线长,传输线可以被视为短期,反射不能被考虑(可以理解:因为线短,即使反射,与原始信号相同)。 从以上分析可以得出结论:如果需要输出电流大,则选择小负荷R;如需输出电压大,则选择负载大R;如果我们需要最大功率,则选择与信号源内阻匹配的电阻R。有时阻抗不匹配还有另一个含义。例如,一些仪器负载条件下设计了一些仪器输出端。如果负载条件发生变化,则可能无法达到原始性能。此时,我们也称之为阻抗不匹配。 在高频电路中,我们还必须考虑反射问题。当信号的频率很高时,信号的波长很短,当波长与传输线的长度相比时,反射信号叠加在原始信号上会改变原始信号的形状。如果传输线的特征阻抗不等于负载阻抗(即不匹配),则在负载端产生反射。为什么阻抗不匹配时会产生反射和特征阻抗的解决方案涉及到二阶微分方程的解决方案,这里我们不详细说明,感兴趣的可以参考电磁场和微波书中的传输线理论。传输线的特征阻抗(也称特征阻抗)由传输线的结构和材料决定,与传输线的长度、信号的范围和频率无关。 例如,常用的闭路电视同轴电缆阻抗为75Ω,一些射频设备的常见特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300Ω到75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。它里面其实就是一个传输线变压器,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。 当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。 为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。 ++++++++++++++++++++++++++++++++++++++++++ Q:什么是电流控制器件? “电流控制器件”输入的是电流信号,是低阻抗输入,需要较大的驱动功率。例如:双极型晶体管(BJT)是电流控制器件、TTL电路是电流控制器件。
“电压控制器件”输入的是电压信号,是高阻抗输入,只需要较小的驱动功率;例如:场效应晶体管(FET)是电压控制器件、MOS电路是电压控制器件。
|
电路常识性概念(2)-电容
2008-05-27 22:59
所谓电容,就是容纳和释放电荷的电子元器件。 电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。 另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成。 作为无源元件之一的电容,其作用不外乎以下几种: 1、应用于电源电路,实现旁路、去藕、滤波和储能的作用 1)旁路 在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰. 1)去耦 举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
++++++++++++++++++++++++++++++++++++++++++++++ 关于滤波电容、去耦电容、旁路电容作用
1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高, (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供 一 个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地
2.旁路电容和去耦电容的区别 去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。 在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。 +++++++++++++++++++++++++++++++++++++++++++++ 大电容并联小电容作用及应用原理 大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。 电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。而一些小容量电容则刚刚相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了 ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电容就有很小ESL这样它就具有了很好的高频性能,但由于容量小的缘故,对低频信号的阻抗大。 所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。 常使用的小电容为 0.1uF的瓷片电容,当频率更高时,还可并联更小的电容,例如几pF,几百pF的。而在数字电路中,一般要给每个芯片的电源引脚上并联一个0.1uF的电容到地(这个电容叫做退耦电容,当然也可以理解为电源滤波电容,越靠近芯片越好),因为在这些地方的信号主要是高频信号,使用较小的电容滤波就可以了。 |
电路常识性概念(3)-TTL与CMOS集成电路
2008-05-27 23:11
目前应用最广泛的数字电路是TTL电路和CMOS电路。 1、TTL电路 TTL电路以双极型晶体管为开关元件,所以又称双极型集成电路。双极型数字集成电路是利用电子和空穴两种不同极性的载流子进行电传导的器件。 它具有速度高(开关速度快)、驱动能力强等优点,但其功耗较大,集成度相对较低。 根据应用领域的不同,它分为54系列和74系列,前者为军品,一般工业设备和消费类电子产品多用后者。74系列数字集成电路是国际上通用的标准电路。其品种分为六大类:74××(标准)、74S××(肖特基)、74LS××(低功耗肖特基)、74AS××(先进肖特基)、74ALS××(先进低功耗肖特基)、74F××(高速)、其逻辑功能完全相同。 2、 CMOS电路 MOS电路又称场效应集成电路,属于单极型数字集成电路。单极型数字集成电路中只利用一种极性的载流子(电子或空穴)进行电传导。 它的主要优点是输入阻抗高、功耗低、抗干扰能力强且适合大规模集成。特别是其主导产品CMOS集成电路有着特殊的优点,如静态功耗几乎为零,输出逻辑电平可为VDD或VSS,上升和下降时间处于同数量级等,因而CMOS集成电路产品已成为集成电路的主流之一。 其品种包括4000系列的CMOS电路以及74系列的高速CMOS电路。其中74系列的高速CMOS电路又分为三大类:HC为CMOS工作电平;HCT为TTL工作电平(它可与74LS系列互换使用);HCU适用于无缓冲级的CMOS电路。74系列高速CMOS电路的逻辑功能和引脚排列与相应的74LS系列的品种相同,工作速度也相当高,功耗大为降低。 74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种
74LS TTL电平 TTL电平 74HC COMS电平 COMS电平 74HCT TTL电平 COMS电平 另外,随着推出BiCMOS集成电路,它综合了双极和MOS集成电路的优点,普通双极型门电路的长处正在逐渐消失,一些曾经占主导地位的TTL系列产品正在逐渐退出市场。CMOS门电路不断改进工艺,正朝着高速、低耗、大驱动能力、低电源电压的方向发展。BiCMOS集成电路的输入门电路采用CMOS工艺,其输出端采用双极型推拉式输出方式,既具有CMOS的优势,又具有双极型的长处,已成为集成门电路的新宠。 3、 CMOS集成电路的性能及特点 功耗低 CMOS集成电路采用场效应管,且都是互补结构,工作时两个串联的场效应管总是处于一个管导通另一个管截止的状态,电路静态功耗理论上为零。实际上,由于存在漏电流,CMOS电路尚有微量静态功耗。单个门电路的功耗典型值仅为20mW,动态功耗(在1MHz工作频率时)也仅为几mW。 工作电压范围宽 CMOS集成电路供电简单,供电电源体积小,基本上不需稳压。国产CC4000系列的集成电路,可在3~18V电压下正常工作。 逻辑摆幅大 CMOS集成电路的逻辑高电平"1"、逻辑低电平"0"分别接近于元器件数据手册、IC替代型号,打造电子元器件IC百科大全! 相关文章
|