锐单电子商城 , 一站式电子元器件采购平台!
  • 电话:400-990-0325

电容器失效模式和失效机理

时间:2022-07-24 18:00:00 焊片型铝电解电容器

电容器故障模式和故障机理
电容器的常见故障模式有:击穿、开路、电参数变化(包括电容量差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、导线腐蚀或断裂、绝缘子断裂或表面弧等.电容器故障的原因有很多.各种电容器的材料、结构、制造工艺、性能和使用环境不同,故障机制也不同.
各种常见失效模式的主要产生机制总结如下.
1.常见的七种失效模式
(1) 导致电容器击穿的主要故障机制
① 电介质材料有缺陷或缺陷,或含有导电杂质或导电颗粒;
② 电介质的电老化和热老化;
③ 电介质内的电化学反应;
④ 银离子迁移;
⑤ 电容器制造过程中电介质受到机械损坏;
⑥ 电介质分子结构的变化
⑦ 极间飞弧在高湿度或低压环境弧;
⑧ 电介质在机械应力作用下瞬时短路.
(2) 导致电容器开路的主要故障机制
① 导线部分自愈,使电极与导线绝缘;
② 导线与电极接触表面氧化,导致低电平开路;
③ 导线与电极接触不良;
④ 电解电容器阳极引起箔腐蚀断裂;
⑤ 液体工作台电解质干燥或冻结;
⑥ 机械应力作用下电介质瞬时开路.
(3) 导致电容器电参数恶化的主要故障机制
① 受潮或表面污染;
② 银离子迁移;
③ 自愈效果;
④ 电介质电老化和热老化
⑤ 工作电解质挥发变稠
⑥ 电极腐蚀;
⑦ 电介质腐蚀在湿式电解电容器中;
⑧ 杂质和有害离子的作用;
⑨ 导线和电极的接触电阻增加.
(4) 电容器泄漏的主要原因
① 浸渍材料在电场作用下分解放气,使壳内气压升高;
② 电容器金属外壳与密封盖焊接不良
③ 绝缘了与外壳或引线焊接不佳;
④ 半密封电容器机械密封不良
⑤ 半密封电容器导线表面不够光滑
⑥ 工作电解液腐蚀焊点.
(5) 电容器导线腐蚀或断裂的主要原因
① 电化学腐蚀在高温环境下产生;
② 电解质沿导线泄漏,导致导线化学腐蚀;
③ 导线在电容器制造过程中受到机械损坏;
④ 引线机械强度不够.
(6) 电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃绝缘子烧结过程中残留热量过大;
③ 焊接温度过高或加热不均匀.
(7) 绝缘子表面飞弧的主要原因
① 表面受潮绝缘,降低表面绝缘电阻;
② 绝缘了设计不合理
③ 绝缘选择不当
④ 环境压力过低.
电容器击穿、开路、引线断裂、绝缘了破裂等使电容器完全失去工作能力的失效属致命性失效,其余一些失效会使电容不能满足使用要求,并逐渐向致命失效过渡;
在工作应力和环境应力的综合作用下,电容器在工作一段时间后会分别或同时产生一些故障模式.同一故障模式有多种故障机制,同一故障机制可以产生多种故障模式.失效模式与失效机制的关系不是一一对应的.
2.电容器故障机理分析
(1)潮湿对电参数恶化的影响
当空气湿度过高时,水膜凝结在电容器外壳表面,可降低电容器表面的绝缘电阻.在这里,对于半密封结构电容器,水也可以渗透到电容器介质中,降低电容器介质的绝缘电阻绝缘能力.因此,高温高湿环境对电容器参数恶化的影响极为显著.干燥除湿后,电容器的电性能可以提高,但水分子电解的后果无法根除.例如,当电容器在高温条件下工作时,水分子在电场作用下电解为氢离子(H )和氢氧根离子(OH-),导线根部产生电化学腐蚀.即使干燥和除湿,也不可能恢复引线.
(2)银离子迁移的后果
大多数无机介质电容器使用银电极。当半密封电容器在高温条件下工作时,渗入电容器的水分子产生电解.在阳极氧化反应中,银离子与氢氧根离子结合产生氢氧化银.氢氧化银和氢离子在阴极还原反应中产生银和水.由于电极反应,阳极的银离子不断恢复到阴极,形成不连续的金属银颗粒,并通过水膜连接到树状阳极.银离子迁移不仅发生在无机介质表面,还扩散到无机介质中,导致漏电流增加。严重时,两个银电极之间会完全短路,导致电容器击穿.
银离子迁移会严重破坏正电极表面的银层,导线焊点与电极表面的银层之间有半导体氧化银,增加无机介质电容器的等效串联电阻,增加金属部分的损耗,电容器损耗角的正切值显著增加.
由于正电极有效面积的减小,电容器的电容量会下降.由于氧化银半导体存在于无机介质电容器两个电极之间的介质表面,表面绝缘电阻降低.当银离子迁移严重时,两个电极之间的树枝形银桥大大降低了电容器的绝缘电阻.
综上所述,银离子迁移不仅会恶化非密封无机介质电容器的电气性能,还会导致介质击穿场强烈下降,最终导致电容器击穿.
值得一提的是,银电极低频陶瓷独石电容器因银离子迁移而失效的现象比其他类型的陶瓷介质电容器严重得多,因为该电容器的一次烧制工艺和多层叠片结构.在一次烧制银电极和陶瓷介质的过程中,银参与了陶瓷介质表面的固相反应,渗透到瓷银接触处形成界面层.如果陶瓷介质不够致密,银离子迁移不仅可以发生在陶瓷介质表面,还可以穿透陶瓷介质层.多层叠片结构的缝隙较多,电极位置不易精确,介质表面的留边量小,叠片层两端涂覆外电极时银浆渗入缝隙,降低了介质表面的绝缘电阻,并使电极之间的路径缩短,银离子迁移时容易产生短路现象.
(3)、高湿度条件下陶瓷电容器击穿机理
半密封陶瓷电容器在高湿度环境下工作时,击穿失效是一个常见的严重问题.击穿现象可分为介质击穿和表面极间弧击穿.根据击穿可分为早期击穿和老化击穿.早期突破暴露了电容介质材料和生产过程中的缺陷,导致陶瓷介质电强度显著降低,导致电容器在高湿度环境的电场或工作初期.老化击穿多属于电化学击穿范畴.由于陶瓷电容器银的迁移,陶瓷电容器的电解老化已成为一个常见的问题.银迁移形成的导电分支会局部增加漏电流,导致热击穿,断裂或烧毁电容器.热击穿现象多发生在管形或圆形的小型瓷介电容器中,因为击穿时局部发热严重,较薄的管壁或较小的瓷体容易烧坏或断裂.
此外,在以二氧化钛为主的陶瓷介质中,二氧化钛的还原反应也可能在负载条件下产生,使钛离子从四价变为三价.陶瓷介质的老化显著降低了电容器的介电强度,可能导致电容器击穿.因此,这种陶瓷电容器的电解击穿比不含二氧化钛的陶瓷介质电容器更严重.
银离子迁移导致电容器极间边缘电场严重畸变,由于陶瓷介质表面在高湿度环境下凝结水膜,电容器边缘表面的电晕放电电压显著降低,在工作条件下产生极间飞弧.严重时,电容器表面极间飞弧.与电容结构、极间距、负载电压、保护层的疏水性和透湿性有关.主要原因是极间飞弧击穿边缘表面,因为介质边缘较小,银离子迁移和表面水膜在潮湿环境中工作,显著降低电容器边缘表面绝缘电阻,导致电晕放电,最终导致击穿.特别是在高湿度环境中.由于银离子迁移的产生和发展需要一段时间,在耐压试验初期,故障模式主要是介质击穿,直到试验500h以后,主要失效模式才过渡为边缘表面极间飞弧击穿.
(4)高频精密电容器的低电平故障机制
云母是一种理想的电容介质材料,绝缘性能高,耐高温,介质损耗小,厚度可达25微米.云母电容器的主要优点是损耗小、频率稳定性好、分布电感小、绝缘电阻大,特别适用于高频通信电路中的精密电容器.但云母资源有限,难以推广使用.近几十年来,有机薄膜电容器发展迅速,其中聚苯乙烯薄膜电容器具有损耗小、绝缘电阻大、稳定性好、介质强度高等优点.精密聚苯乙烯电容器可于高频电路.需要注意的是,高频电路中使用的精密聚苯乙烯电容器一般采用金属箔极板,以提高绝缘电阻,减少损耗.
自20世纪60年代以来,电容器的低电平故障是一个新问题.低电平故障是指电容器在低电压工作条件下开路或容量下降超差的故障.自20世纪60年代以来,半导体设备得到了广泛的应用。半导体电路的电压远低于电子管电路,使电容器的实际工作电压在某些电路中只有几毫伏,导致电容器低电平故障。具体性能是电容器完全失去电容量或部分失去电容量.对于低电平冲击,使电容器的电容恢复正常.
低电平故障的主要原因是电容器导线与电容器极板接触不良,接触电阻增加,导致电容器完全开路或电容量范围下降.
铝箔一般用作精密聚苯乙烯薄膜电容器的极板,铜引线与铝箔极板点焊在一起.铝箔在空气中容易氧化;极板表面产生氧化铝半导体膜,氧化膜层上的电压不足以在低电平条件下击穿。因此,铝箔之间形成的间隙电容的串联等效容量越小,串联等效容量越小.因此,低电平容量取决于极板表面氧化铝层的厚度,氧化铝层越厚,低电平条件下电容器的电容量越小.此外,当电容器在交流电路中工作时,由于接触电阻过大,有效电容量会降低到开路程度.即使极板一引线之间没有导电不良的间隔层,也会产生这种后果.
精密聚苯乙烯电容器低电平故障的具体因素如下:
① 导线表面氧化或涂层过薄,导致焊接不牢固;
② 导线与铝箔点焊接不良,铝箔表面点焊处氧化铝膜层未消除;
③ 单引线结构焊点过少,增加了低电平故障的概率;
④ 虽然粗导线根部扁平部分的接触面积较大,但点焊后焊点的应力也较大。在热处理或温度循环过程中,接触部位可能受损,接触情况可能恶化;
⑤ 水分进入电容器芯,氧化腐蚀焊点,增加接触电阻.
导致云母电容器低电平故障的具体因素如下:
① 银电极和引出铜箔和铜箔和引线卡之间有一层薄薄的地腊膜.在低电平条件下,外加电压不足以突破绝缘膜,产生间隙电容,增加接触电阻;
② 银电极和铜箔被有害气体侵蚀,增加接触电阻.银和铜在潮湿的硫气环境中容易硫化,从而增加极板引线之间的接触电阻.
(5)金属化纸介电容失效机制
金属化纸介质电容器的极板是真空蒸发在电容器纸表面的金属膜
A、电参数恶化失效
自愈是金属化电容器的独特优势,但自愈过程相当复杂。虽然自愈可以避免电容器因介质短路而立即突破,但自愈部位肯定会出现金属颗粒迁移和介质材料热裂解.电容纸由纤维组成,纤维素是碳水化合物的聚合物.电容器纤维素在高温下解成游离碳原子或碳离子,增加自愈部位的表面导电性,导致电阻降低、损耗增加和电容减少.严重时,电容器可能会因电参数恶化超出技术条件许可范围而失效.
当金属纸介质电容器低于额定工作电压时,自愈能量不足。电容器纸中的导电杂质在电场作用下形成低电阻通路,也会降低电容器的绝缘电阻,增加损耗.
电容纸是一种多孔极性有机介质材料,易吸收水分.虽然电容器芯被浸渍,但如果工艺不当或浸渍不纯,或在电场工作相当长时间后发生浸渍老化,电容器的绝缘电阻会降低,损耗也会增加.
电容量超差失效产金属化纸介电容器的一种失效形式.在高温条件下储存时金属化纸介电容器可能因电容量增加过多而失效,在高温条件下加电压工作时又可能因电容量减少过多而失效.高温储存时半密封型金属化纸介电容器免不了吸潮,水是强极性物质,其介电常数接近浸渍电容器介电常数的20倍.因此,少量潮气侵入电容器芯子,也会引起电容量显著增大.烘烤去湿后电容呈会有所下降.如果电容器在高温环境中工作,则水分和电场的共同作用会使金属膜电极产生电解性腐蚀,使极板有效面积减小与极板电阻增大,导致电容量大幅度下降.如果引线与金属膜层接触部位产生腐蚀,则接触电阻增大,电容器的有效电容量将更进一步减小.个别电容器的电容量可降到接近于开路的程度.
B、引线断裂失效
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
A、漏液
铝电解电容器的工作电解液泄漏是一个严重问题.工作电解液略呈现酸性,漏出的工作电解液严重污染和腐蚀电容器周围的其他元器件和印刷电路板.同时电解电容器内部,由于漏液而使工作电解液逐渐干涸,丧失修补阳极氧化膜介质的能力,导致电容器击穿或电参数恶化而失效.
产生漏液的原因很多,主要是铝电解电容器密封不佳.采用铝负极箔夹在外壳边与封口板之间的封口结构时很容易在壳边渗漏电解液.采用橡胶塞密封的电容器,也可能因橡胶老化、龟裂而引起漏液.此外,机械密封工艺有问题的产品也容易漏液.总之,漏液与密封结构、密封材料与密封工艺有密切的关系.
B、爆炸
铝电解电容器在工作电压中交流成分过大,或氧化膜介质有较多缺陷,或存在氯根、硫酸根之类有害的阴离子,以致漏电流较大时电解作用产生气体的速率较快,大部分气体用于修补阳极氧化膜,少部分氧气储存在电容器壳内.工作时间愈长,漏电流愈大,壳内气体愈多,温度愈高.电容器金属壳内外的气压差值将随工作电压和工作时间的增加而增大.如果产品密封不佳,则将造成漏液;如果密封良好,又没有任何防爆措施,则气压增大到一定程度就会引起电容器爆炸.高压大容量电容器的漏电流较大,爆炸可能性更大.目前,已普遍采用防爆外壳结构,在金属外壳上部增加一道褶缝,气压高时将褶缝顶开,增大壳内容积,从而降低气压,减少爆炸危险.
C、开路
铝电解电容器在高温或潮热环境中长期工作时可能出现开路失效,其原因在于阳极引出箔片遭受电化学腐蚀而断裂.对于高压大容量电容器,这种失效模式较多.此外,阳极引出箔片和阳极箔铆接后,未经充分平,则接触不良会使电容器出现间歇开路.
铝电解电容器内采用以DMF(二甲基酰胺)为溶剂的工作电解液时,DMF溶液是氧化剂,在高温下氧化能力更强.工作一段时间后可能因阳极引出箔片与焊片的铆接部位生成氧化膜而引起电容器开路.如果采用超声波焊接机把引出箔片与焊点在一起,可则减少这类失效现象.
D、击穿
铝电解电容器击穿是由于阳极氧化铝介质膜破裂,导致电解液直接与阳极接触而造成的.氧化铝膜可能因各种材料,工艺或环境条件方面的原因而受到局部损伤.在外加电场的作用下工作电解液提供的氧离子可在损伤部位重新形成氧化膜,使阳极氧化膜得以填平修复.但是如果在损伤部位存在杂质离子或其他缺陷,使填平修复工作无法完善,则在阳极氧化膜上会留下微孔,甚至可能成为穿透孔,使铝电解电容器击穿.
此外,随着使用和储存时间的增长,电解液中溶剂逐渐消耗和挥发,使溶液酸值上升,在储存过程中对氧化膜层发生腐蚀作用.同时,由于电解液老化与干涸,在电场作用下已无法提供氧离子修补氧化膜,从而丧失了自愈作用,氧化膜一经损坏就会导致电容器击穿.工艺缺陷也是铝电解电容器击穿的一个主要原因.如果赋能过程中形成的阳极氧化膜不够致密与牢固,在后续的裁片、铆接工艺中又使氧化膜受到严重损伤.这种阳极氧化膜难以在最后的老炼工序中修补完善,以致电容器使用过程中,漏电流很大,局部自愈已挽救不了最终击穿的命运.又如铆接工艺不佳时,引出箔条上的毛剌严重剌伤氧化膜,刺伤部位漏电流很大,局部过热使电容器产生热击穿.
E、电参数恶化
A、电容量下降与损耗增大
铝电解电容器的电容量在工作早期缓慢下降,这是由于负荷过程中工作电解液不断修补并增厚阳极氧化膜所致.铝电解电容器在使用后期,由于电解液耗损较多、溶液变稠,电阻率因黏度增大而上升,使工作电解质的等效串联电阻增大,导致电容器损耗明显增大.同时,黏度增大的电解液难于充分接触经腐蚀处理的凹凸不平铝箔表面上的氧化膜层,这样就使铝电解电容器的极板有效面积减小,引起电容量急剧下降.这也是电容器使用寿命临近结束的表现.
此外,如果工作电解液在低温下黏度增大过多,也会造成损耗增大与电容量急剧下降的后果.硼酸一乙二醇系统工作电解液的低温性能不佳,黏度过大导致等效串联电阻激增,使损耗变大和有效电容量骤减,从而引起铝电解电容器在严寒环境中使用时失效.
B、漏电流增加
漏电流增加往往导致铝电解电容器失效.赋能工艺水平低,所形成的氧化膜不够致密与牢固,开片工艺落后,氧化膜损伤与沾污严重,工作电解液配方不佳,原材料纯度不高,电解液的化学性质与电化学性质难以长期稳定,铝箔纯度不高,杂质含量多……这些因素均可能造成漏电流超差失效.
铝电解电容器中氯离子沾污严重,漏电流导致沾污部位氧化膜分解,造成穿孔,促使电流进一步增大.此外,铝箔的杂质含量较高,一般铁杂质颗粒的尺寸大于阳极氧化膜的厚度,使电流易于传导.铜与硅杂质的存在影响铝氧化物向晶态结构转变.铜和铝还可在电解质内组成微电池,使铝箔遭到腐蚀破坏.总之,铝箔中金属杂质的存在,会使铝电解电容器漏电流增大,从而缩短电容器的寿命.
3、提高电容器可靠性的措施
对材料、结构和制造工艺进行改进说明.
1、电极材料的改进
陶瓷电容器一直使用银电极.银离子迁移和由此而引起含钛陶瓷介质的加速老化是导致陶瓷电容器失效的主要原因.有的厂家生产陶瓷电容器已不用银电极,而改用镍电极,在陶瓷基片上采用化学镀镍工艺.由于镍的化学稳定性比银好,电迁移率低,提高了陶瓷电容器的性能和可靠性.
国产云母电容器的电极材料也是银,同样存在银离子迁移现象.日本海缆通信系统中用的云母器,它的电极材料及电极引线间的连接均采用金,这就保证了云母电容器优良的性能和高可靠性.
镀金云母电容器与镀银云母电容器相比较:电容温度系数,前者约为后者的1/2,且偏差也小;湿度对容量的影响,前者比后者小一个数量级,且是可逆的;损耗角正切值,前者比后者小个数量级;在电压负荷下电容量相对变化率,前者约为后者的1/5~1/10.据推算,镀金云母电容器工作20年的电容量变化率≤±0.1%.
改进电极材料的另一个例子是金属化纸介电容器.金属化纸介电容器都采用锌蒸发在电容器纸上形成的金属层作为电极.锌膜在空气中易氧化,生成半导体性质的氧化锌,而且会继续向底层氧化,造成板极电阻的增加和电容器损耗的增大.此外,锌金属化膜在潮湿环境下易腐蚀.锌金属化膜的另一个缺点是自愈所需要的能量较大,而且电容器经击穿自愈后其绝缘电阻值较低.为了提高金属化纸介电容器的性能和可靠性,已用铝金属化层来代替锌金属化层.大气中在铝膜的表面会生成一层薄而坚固的氧化氯膜.使铝膜不再继续氧化.同时氧化氯膜对潮气抗腐蚀性能好.另外铝金属化层自愈性能好,铝电极可以在介质上残存的微量潮气和低电压作用下产生电化学反应,生成氧化铝介质膜,经过一段时间,电容器的绝缘电阻得到恢复.此外,铝的比电导较锌大,这就减小了板极电阻和电容器的损耗.因此,铝在金属化电容器的生产中取代锌做电极改善了电容器的性能,提高了电容器的可靠性.
2、工作电解质的改进
铝电解电容器工作电解质为硼酸一乙醇系统,其工作温度范围为+85~—40℃.在低温下,由于乙二醇中的羟基彼此以氢键联合,出现聚合物,以致工作电解液变稠冻结,电阻率急剧增大,电容量下降和损耗角正切值增大,使电容器的性能恶化.近来普遍采用的以DMF为溶剂的工作电解液,在较宽的温度范围内(-55~+85℃)电性能优良.
为了解决液体钽电解电容器漏液问题,除了在密封结构上采取措施外,采用凝胶状电解质,因为凝胶状电解质黏度大,不容易从微小的缝隙中漏出.
3、电介质材料的改进
电介质材料是决定电容器性能和可靠性的关键材料.以往生产的聚苯乙烯电容器,其电介质是采用厚度为20μm的聚苯乙烯单层薄膜,由于薄膜的厚度不均、有针孔、有导电杂质和微粒先进原因,制成的电容器就存在着某些陷患,在外部各种环境和电应力作用下,这些缺陷就会逐渐暴露出来,导致电容器的击穿、开路或电参数超差失效.为了提高和产品的性能和可靠性.电容器的电介质由原来单层20μm厚薄膜改进为双层10μm薄膜这样电介质的厚度仍为20μm,电容器的体积不变,但产品的质量却提高了.因为双层薄膜可以互相掩盖薄膜中的缺陷和疵点,这就使得电容器的耐压和可靠性得到了提高.
又如,以银做电极的独石低频瓷介电容器,由于银电极和瓷料在900℃下一次烧成时瓷料欠烧不能获得致密的陶瓷介质,存在较大的气孔率;此外银电极常用的助熔剂氧化钡会渗透到瓷体内部,在高温下依靠氧化钡和银之间良好的浸润“互熔”能力,使电极及介质内部出现热扩散现象,即宏观上看到的“瓷吸银”现象.银伴随着氧化钡进入瓷体中去后,大大减薄了介质的有效厚度,引起产品绝缘电阻的减少和可靠性的降低.为了提高独石电容器的可靠性,改用了银—钯电极代替通常含有的氧化钡电极,并且在资料配方中添加了1%的5#玻璃粉.消除了在高温下一次烧结时金属电极向瓷介质层的热扩散现象,能促使瓷料烧结致密化.使得产品的性能和可靠性有较大提高,与原工艺和介质材料相比较,电容器的可靠性提高了1~2个数量级.
4、结构的改进
上面已论述了聚苯乙烯电容器的低电平失效.导致低电平不时通时不通的原因是其引线和板有焊接不好而引起的.原来的引线结构是用较粗的单引线,与铝箔厚度比较尺寸相差悬殊,因此点焊质量不高.后改用细引线,并将冲压加工改进为辗轧加工.这样即可减少加式过程中产生毛刺,点焊质量也高.此外,经过分析研究,从单引线结构较细的Φ0.2mm打扁引线,在卷芯的芯轴孔中间位置插入Φ0.8mm的绝缘线,两端插入预先打有凹槽的Φ0.8mm浸锡引线作为加固引线,经热处理聚合固定.用双引线结构后,聚苯乙烯电容器低电平失效的概率由万分之五减少到四百万分之一.
细双引线加固引线结构的电容器,由于附加了较粗的Φ0.8mm外部连接加固引线,并且在插入芯子内的一端上有一个凹槽,保证了引线的稳固性,所以提高了电容器外部连接的强度,能耐振,不易折断.同时,在两根加固引线间有一段相同直径的绝缘线,这不仅可以防止两极间可能发生的偶然击穿,而且还能使电容器聚合后变形小,使芯子内介质薄膜的应力均匀,这就改善了电容量的稳定性.
长期以来,铝电解电容器的爆炸是令人生畏的,CV乘积大的电容器爆炸的可能性更大,而且破坏性也大.为了提高铝电解电容器的可靠性,提高整机的可靠性和安全性,国内已经度制了有防爆结构的铝电解电容器.当电容器内部气压加到一定程度时,防爆阀释放气体而防止爆炸.
5、工艺方面的改进
为了提高铝电解电容器的性能和寿命,就必须获得性能优良、结构致密、缺陷少和耐酸碱腐蚀的电介质氧化氯薄膜.传统的铝电解电容器赋能工艺是采用硼酸一乙二醇系统赋能液,虽然赋能后获得的氧化膜介电性能良好,但其氧化膜抗水合能力和耐酸碱腐蚀性能较差,因而铝电解电容器的性能和可靠性都差.采用已二酸形成工艺,由于已二酸在电解液中是水的表面活性物质,其羰基具有较强的电负性,极易吸附到阳极箔上,阻止阳极氧化时的晶胞生长,迫使放电离子产生新的晶核,生成致密的氧化膜.氧化膜的疵点、空洞、裂纹和缝隙都较少,无论是在常温还是在高温条件下,产品的漏电流都比较小,延长了产品的平均寿命,提高了可靠性.
为了解决云母电容器低电平失效,即解决引出线和电极接触不良问题,将原来用铜箔接触的引出线改为焊接工艺引出,能基本消除低电平不通的失效模式.电极和引线之间的焊接方法有两种:全焊接法和点焊法.全焊接法是指云母片上银电极和引出线之间,引出线和引线卡子之间全部、焊接起来.方法是把引出线铜箔改为热浸铜箔,芯组装配方法和原来一样.芯组打好卡子之后,通过施加温度和压力,一道工序把电极银层和引出线之间、引出线和引出卡子之间,全部焊接起来.
美国生产高可靠云母电容器采用点焊法.即云母片上电极和引出线连接采用点焊,点焊后用10~20倍的放大镜一片一片地对焊接质量进行检查.
改进工艺提高产品可靠性的另一个例子是独石陶瓷电容器的包封工艺.以酒精为溶剂的环氧树脂浸渍包封产品来说,由于包装的多孔性,受潮聚积水分为银离子的迁移提供了条件,造成产品短时间内大量失效.为了提高独石陶瓷电容器的防潮性能,改用先涂覆GN521硅凝胶做底漆,再包封环氧树脂的工艺.长期潮热负荷试验结果表明,这种包装工艺有很好的防潮性能,产品的可靠性有明显的提高.
摘录《可靠性物理》姚立真:“第10章 阻容元件的失效模式和失效机理”.

锐单商城拥有海量元器件数据手册IC替代型号,打造电子元器件IC百科大全!

相关文章